Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Abstract elementary classes induced by tilting and cotilting modules have finite character


Author: Jan Trlifaj
Journal: Proc. Amer. Math. Soc. 137 (2009), 1127-1133
MSC (2000): Primary 03C95, 16E30; Secondary 03C60, 16D90
DOI: https://doi.org/10.1090/S0002-9939-08-09618-4
Published electronically: October 1, 2008
MathSciNet review: 2457454
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a ring and $ \mathcal C$ be a cotilting class of $ R$-modules. Define $ A \leq B$ by $ A \subseteq B$ and $ A, B, B/A \in \mathcal C$. Then $ (\mathcal C, \leq)$ is an abstract elementary class of finite character. An analogous result holds for all abstract elementary classes induced by tilting modules.


References [Enhancements On Off] (What's this?)

  • 1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., GTM 13, Springer-Verlag, New York, 1992. MR 1245487 (94i:16001)
  • 2. J. Baldwin, Categoricity, www.math.uic.edu/jbaldwin.
  • 3. J. T. Baldwin, P. C. Eklof, J. Trlifaj, $ ^\perp N$ as an abstract elementary class, Annals of Pure Appl. Logic 149(2007), 25-39. MR 2364195
  • 4. S. Bazzoni, Cotilting and tilting modules over Prüfer domains, Forum Math. 19(2007), 1005-1027. MR 2367952
  • 5. S. Bazzoni, When are definable classes tilting and cotilting classes?, to appear in J. Algebra.
  • 6. S. Bazzoni, J. Šťovíček, All tilting modules are of finite type, Proc. Amer. Math. Soc. 135(2007), 3771-3781. MR 2341926
  • 7. W. Crawley-Boevey, Infinite-dimensional modules in the representation theory of finite- dimensional algebras, CMS Conf. Proc. 23, Amer. Math. Soc., Providence, RI, 1998, 29-54. MR 1648602 (99m:16016)
  • 8. R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, W. de Gruyter, Berlin, 2006. MR 2251271 (2007m:16007)
  • 9. T. Hyttinen and M. Kesälä, Independence in finitary abstract elementary classes, Annals of Pure Appl. Logic 143(2006), 103-138. MR 2258625 (2007k:03087)
  • 10. D. W. Kueker, Abstract Elementary Classes and Infinitary Logics, preprint (2008).
  • 11. M. Prest, Model Theory and Modules, LMS Lecture Note Ser. 130, Cambridge Univ. Press, Cambridge, 1988. MR 933092 (89h:03061)
  • 12. S. Shelah, Classification of nonelementary classes, II. Abstract elementary classes, In J. T. Baldwin, ed., Classification Theory (Chicago, IL, 1985), Lecture Notes in Math. 1292, Springer, Berlin, 1987, 419-497. MR 1033034 (91h:03046)
  • 13. B. Stenström, Rings of Quotients, Springer-Verlag, New York-Heidelberg, 1975. MR 0389953 (52:10782)
  • 14. J. Šťovíček, All $ n$-cotilting modules are pure-injective, Proc. Amer. Math. Soc. 134(2006), 1891-1897. MR 2215116 (2007a:16005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03C95, 16E30, 03C60, 16D90

Retrieve articles in all journals with MSC (2000): 03C95, 16E30, 03C60, 16D90


Additional Information

Jan Trlifaj
Affiliation: Faculty of Mathematics and Physics, Department of Algebra, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic
Email: trlifaj@karlin.mff.cuni.cz

DOI: https://doi.org/10.1090/S0002-9939-08-09618-4
Keywords: Abstract elementary class of finite character, definable class, tilting module, cotilting module, Ext
Received by editor(s): December 14, 2007
Received by editor(s) in revised form: April 15, 2008
Published electronically: October 1, 2008
Additional Notes: This research was supported by GAČR 201/06/0510 and MSM 0021620839
Communicated by: Julia Knight
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society