Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniformly convex functions on Banach spaces


Authors: J. Borwein, A. J. Guirao, P. Hájek and J. Vanderwerff
Journal: Proc. Amer. Math. Soc. 137 (2009), 1081-1091
MSC (2000): Primary 52A41, 46G05, 46N10, 49J50, 90C25
DOI: https://doi.org/10.1090/S0002-9939-08-09630-5
Published electronically: October 3, 2008
MathSciNet review: 2457450
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a Banach space ($ X$,$ \Vert\cdot\Vert$), we study the connection between uniformly convex functions $ f:X \to \mathbb{R}$ bounded above by $ \Vert\cdot\Vert^p$ and the existence of norms on $ X$ with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function $ f:X \to \mathbb{R}$ bounded above by $ \Vert\cdot\Vert^2$ if and only if $ X$ admits an equivalent norm with modulus of convexity of power type 2.


References [Enhancements On Off] (What's this?)

  • 1. D. Azé and J-P. Penot, Uniformly convex and uniformly smooth convex functions, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 4, 705-730. MR 1623472 (99c:49015)
  • 2. H. H. Bauschke, J. M. Borwein, and P. L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Communications in Contemporary Mathematics 3 (2001), 615-647. MR 1869107 (2002k:49040)
  • 3. D. Butnariu, A. N. Iusem, and E. Resmerita, Total convexity for powers of the norm in uniformly convex Banach spaces, J. Convex Anal. 7 (2000), no. 2, 319-334. MR 1811683 (2001m:46013)
  • 4. D. Butnariu, A. N. Iusem, and C. Zălinescu, On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces, J. Convex Anal. 10 (2003), no. 1, 35-61. MR 1999901 (2004e:90161)
  • 5. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. (2006), Art. ID 84919, 39 pp. MR 2211675 (2006k:47142)
  • 6. R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993. MR 1211634 (94d:46012)
  • 7. J. Duda, L. Veselý, and L. Zajıček, On d.c. functions and mappings, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), no. 1, 111-138. MR 1993883 (2004f:49030)
  • 8. T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976), no. 2, 121-155. MR 0425581 (54:13535)
  • 9. V. I. Gurariĭ, Differential properties of the convexity moduli of Banach spaces, Mat. Issled. 2 (1967), no. vyp. 1, 141-148. MR 0211245 (35:2127)
  • 10. E. S. Levitin and B. T. Poljak, Convergence of minimizing sequences in problems on the relative extremum, Dokl. Akad. Nauk SSSR 168 (1966), 997-1000. MR 0199016 (33:7166)
  • 11. G. Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat. 4 (1960), 15-17 (1960). MR 0140915 (25:4329)
  • 12. K. R. Stromberg, An Introduction to Classical Real Analyis, Wadsworth International Mathematics Series, Wadsworth, Belmont, California, 1981. MR 604364 (82c:26002)
  • 13. C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), no. 2, 344-374. MR 716088 (85a:26018)
  • 14. -, Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc., River Edge, NJ, 2002. MR 1921556 (2003k:49003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 52A41, 46G05, 46N10, 49J50, 90C25

Retrieve articles in all journals with MSC (2000): 52A41, 46G05, 46N10, 49J50, 90C25


Additional Information

J. Borwein
Affiliation: Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia B3H 1W5, Canada – and – School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
Email: jonathan.borwein@newcastle.edu.au, jborwein@cs.dal.ca

A. J. Guirao
Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo (Murcia), Spain
Email: ajguirao@um.es

P. Hájek
Affiliation: Mathematical Institute, AV ČR, Žitná 25, 115 67 Praha 1, Czech Republic
Email: hajek@math.cas.cz

J. Vanderwerff
Affiliation: Department of Mathematics, La Sierra University, Riverside, California 92515
Email: jvanderw@lasierra.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09630-5
Keywords: Convex function, uniformly smooth, uniformly convex, superreflexive.
Received by editor(s): March 16, 2007
Received by editor(s) in revised form: April 26, 2008
Published electronically: October 3, 2008
Additional Notes: The first author’s research was supported by NSERC and the Canada Research Chair Program.
The second author’s research was supported by the grants MTM2005-08379 of MECD (Spain), 00690/PI/04 of Fundación Séneca (CARM, Spain) and AP2003-4453 of MECD (Spain).
The third author’s research was supported by the grants A100190502, IAA 100190801 and Inst. Research Plan AV0Z10190503.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society