Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A trace formula and Schmincke inequality on the half-line


Authors: Amin Boumenir and Vu Kim Tuan
Journal: Proc. Amer. Math. Soc. 137 (2009), 1039-1049
MSC (2000): Primary 34L15, 34A55
DOI: https://doi.org/10.1090/S0002-9939-08-09659-7
Published electronically: September 25, 2008
MathSciNet review: 2457445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we derive a trace formula for the Schrödinger operator on the half-line. As a consequence we obtain a Schmincke type inequality with sharp constant. The main tool in our investigation is the inverse spectral Gelfand-Levitan theory, which allows us to compare two Schrödinger operators whose spectra differ by few eigenvalues.


References [Enhancements On Off] (What's this?)

  • 1. Benguria, R; and Loss, M.; A simple proof of a theorem of Laptev and Weidl. Math. Res. Lett. 7 (2000), no. 2-3, 195-203. MR 1764316 (2001c:81042)
  • 2. Benguria, R; and Loss, M.; Connection between the Lieb-Thirring conjecture for Schrödinger operators and an isoperimetric problem for ovals on the plane. Partial Differential Equations and Inverse Problems, 53-61, Contemp. Math., 362, Amer. Math. Soc., Providence, RI, 2004. MR 2091490 (2005f:81057)
  • 3. Boumenir, A; A comparison theorem for selfadjoint operators. Proc. Amer. Math. Soc. 111 (1991), 161-175. MR 1021896 (91i:47035)
  • 4. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G.; Tables of Integral Transforms. Vol. I. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. MR 0061695 (15:868a)
  • 5. Hundertmark, D.; Lieb, E.H.; and Thomas, L.E.; A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator. Adv. Theor. Math. Phys. 2 (1998), 719-731. MR 1663336 (2000c:81062)
  • 6. Gesztesy, F.; and Teschl, G.; On the double commutation method. Proc. Amer. Math. Soc. 124 (1996), no. 6, 1831-1840. MR 1322925 (96h:34171)
  • 7. Gesztesy, F.; A complete spectral characterization of the double commutation method. J. Funct. Anal. 117 (1993), no. 2, 401-446. MR 1244942 (94m:47093)
  • 8. Laptev, A.; and Weidl, T.; Sharp Lieb-Thirring inequalities in high dimensions, Acta Mathematica 184 (2000), 87-111. MR 1756570 (2001c:35173)
  • 9. Levitan, B.M.; Expansion in Characteristic Functions of Differential Equations of the Second Order (Russian). Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950. MR 0036918 (12:183e)
  • 10. Levitan, B.M.; Inverse Sturm-Liouville Problems. VSP, Zeist, 1987. MR 933088 (89b:34001)
  • 11. Lieb, E.; and Thirring, W.; Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann. Eds: Lieb E., Simon B., Wightman A., Princeton University Press, Princeton, NJ, 1976.
  • 12. Naĭmark, M.A.; Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space, Ungar Publishing Co., New York, 1968. MR 0262880 (41:7485)
  • 13. Schmincke, U.W.; On Schrödinger's factorization method for Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 67-84. MR 529570 (80f:34025)
  • 14. Weidl, T.; On the Lieb-Thirring constants $ L_{\gamma,1}$ for $ \gamma\geq1/2$. Commun. Math. Phys. 178 (1996), 135-146. MR 1387945 (97c:81039)
  • 15. Zakharov, V.E.; and Faddeev, L.D.; Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct. Anal. Appl. 5 (1971), 280-287. Translated from the Russian original in Funkcional. Anal. i Prilozen 5 (1971), no. 4, 18-27. MR 0303132 (46:2270)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34L15, 34A55

Retrieve articles in all journals with MSC (2000): 34L15, 34A55


Additional Information

Amin Boumenir
Affiliation: Department of Mathematics, University of West Georgia, Carrollton, Georgia 30118
Email: boumenir@westga.edu

Vu Kim Tuan
Affiliation: Department of Mathematics, University of West Georgia, Carrollton, Georgia 30118
Email: vu@westga.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09659-7
Keywords: Trace formula, negative eigenvalues, Schmincke inequality, inverse spectral theory
Received by editor(s): March 31, 2008
Published electronically: September 25, 2008
Communicated by: Walter Craig
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society