On the same -type conjecture for the suspension of the infinite complex projective space

Author:
Dae-Woong Lee

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1161-1168

MSC (2000):
Primary 55P15; Secondary 55S37, 55P40

DOI:
https://doi.org/10.1090/S0002-9939-08-09666-4

Published electronically:
October 20, 2008

MathSciNet review:
2457459

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an iterated commutator of self-maps on the suspension of the infinite complex projective space. In this paper, we produce useful self-maps of the form , where means the addition of maps on the suspension structure of . We then give the answer to the conjecture saying that the set of all the same homotopy -types of the suspension of the infinite complex projective space is the one element set consisting of a single homotopy type.

**1.**J. F. Adams,*An example in homotopy theory*, Proc. Camb. Phil. Soc.**53**(1957), 922-923. MR**0091477 (19:975d)****2.**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Math.**304**, Springer-Verlag, Berlin-New York, 1972. MR**0365573 (51:1825)****3.**F. R. Cohen, J. C. Moore and J. A. Neisendorfer,*Torsion in homotopy groups*, Ann. of Math. (2)**109**(1979), 121-168. MR**519355 (80e:55024)****4.**B. I. Gray,*Spaces of the same -type, for all*, Topology**5**(1966), 241-243. MR**0196743 (33:4929)****5.**J. R. Harper and J. Roitberg,*Phantom maps and spaces of the same -type for all*, J. Pure Appl. Algebra**80**(1992), 123-137. MR**1172722 (93g:55010)****6.**P. Hilton, G. Mislin and J. Roitberg,*Homotopical localization*, Proc. London Math. Soc.**26**(1973), 693-706. MR**0326720 (48:5063)****7.**D. Lee,*On self-homotopy equivalences of*, preprint.**8.**C. A. McGibbon,*Self-maps of projective spaces*, Trans. Amer. Math. Soc.**271**(1982), 325-346. MR**648096 (83h:55007)****9.**C. A. McGibbon and J. M. Møller,*How can you tell two spaces apart when they have the same -type for all ?*, Adams Memorial Symposium on Algebraic Topology, N. Ray and G. Walker, eds., London Math. Soc. Lecture Note Series**175**, Cambridge Univ. Press, Cambridge, 1992, 131-143. MR**1170575 (93i:55010)****10.**C. A. McGibbon and J. M. Møller,*On spaces with the same -type for all*, Topology**31**(1992), 177-201. MR**1153244 (92m:55008)****11.**C. A. McGibbon and J. M. Møller,*On infinite dimensional spaces that are rationally equivalent to a bouquet of spheres*, Proceedings of the 1990 Barcelona Conference on Algebraic Topology, Lecture Notes in Math.**1509**, Springer, Berlin, 1992, 285-293. MR**1185978 (93h:55012)****12.**C. A. McGibbon and J. Roitberg,*Phantom maps and rational equivalences*, Amer. J. Math.**116**(1994), 1365-1379. MR**1305869 (95j:55026)****13.**K. Morisugi,*Projective elements in K-theory and self-maps of*, J. Math. Kyoto Univ.**38**(1998), 151-165. MR**1628087 (99g:55008)****14.**G. W. Whitehead,*Elements of homotopy theory*, GTM 61, Springer-Verlag, New York-Heidelberg-Berlin, 1978. MR**516508 (80b:55001)****15.**C. W. Wilkerson,*Classification of spaces of the same -type for all*, Proc. Amer. Math. Soc.**60**(1976), 279-285. MR**0474283 (57:13930)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55P15,
55S37,
55P40

Retrieve articles in all journals with MSC (2000): 55P15, 55S37, 55P40

Additional Information

**Dae-Woong Lee**

Affiliation:
Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea

Email:
dwlee@math.chonbuk.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-08-09666-4

Keywords:
Same $n$-type,
Aut,
commutator,
Samelson (Whitehead) product

Received by editor(s):
February 28, 2008

Received by editor(s) in revised form:
April 28, 2008

Published electronically:
October 20, 2008

Additional Notes:
This paper was (partially) supported by the Chonbuk National University funds for overseas research, 2008

Communicated by:
Paul Goerss

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.