Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the same $ N$-type conjecture for the suspension of the infinite complex projective space


Author: Dae-Woong Lee
Journal: Proc. Amer. Math. Soc. 137 (2009), 1161-1168
MSC (2000): Primary 55P15; Secondary 55S37, 55P40
DOI: https://doi.org/10.1090/S0002-9939-08-09666-4
Published electronically: October 20, 2008
MathSciNet review: 2457459
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ [\varphi _{i_{k}},[\varphi _{i_{k-1}},\cdots,[\varphi _{i_{1}}, \varphi _{i_{2}}],\cdots ]]$ be an iterated commutator of self-maps $ \varphi _{i_{j}}$ on the suspension of the infinite complex projective space. In this paper, we produce useful self-maps of the form $ I + [\varphi _{i_{k}},[\varphi _{i_{k-1}},\cdots, [\varphi _{i_{1}}, \varphi _{i_{2}}],\cdots ]]$, where $ +$ means the addition of maps on the suspension structure of $ \Sigma {\mathbb{C}}P^{\infty}$. We then give the answer to the conjecture saying that the set of all the same homotopy $ n$-types of the suspension of the infinite complex projective space is the one element set consisting of a single homotopy type.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, An example in homotopy theory, Proc. Camb. Phil. Soc. 53 (1957), 922-923. MR 0091477 (19:975d)
  • 2. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573 (51:1825)
  • 3. F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), 121-168. MR 519355 (80e:55024)
  • 4. B. I. Gray, Spaces of the same $ n$-type, for all $ n$, Topology 5 (1966), 241-243. MR 0196743 (33:4929)
  • 5. J. R. Harper and J. Roitberg, Phantom maps and spaces of the same $ n$-type for all $ n$, J. Pure Appl. Algebra 80 (1992), 123-137. MR 1172722 (93g:55010)
  • 6. P. Hilton, G. Mislin and J. Roitberg, Homotopical localization, Proc. London Math. Soc. 26 (1973), 693-706. MR 0326720 (48:5063)
  • 7. D. Lee, On self-homotopy equivalences of $ \Sigma {\mathbb{C}}P^{\infty }$, preprint.
  • 8. C. A. McGibbon, Self-maps of projective spaces, Trans. Amer. Math. Soc. 271 (1982), 325-346. MR 648096 (83h:55007)
  • 9. C. A. McGibbon and J. M. Møller, How can you tell two spaces apart when they have the same $ n$-type for all $ n$?, Adams Memorial Symposium on Algebraic Topology, N. Ray and G. Walker, eds., London Math. Soc. Lecture Note Series 175, Cambridge Univ. Press, Cambridge, 1992, 131-143. MR 1170575 (93i:55010)
  • 10. C. A. McGibbon and J. M. Møller, On spaces with the same $ n$-type for all $ n$, Topology 31 (1992), 177-201. MR 1153244 (92m:55008)
  • 11. C. A. McGibbon and J. M. Møller, On infinite dimensional spaces that are rationally equivalent to a bouquet of spheres, Proceedings of the 1990 Barcelona Conference on Algebraic Topology, Lecture Notes in Math. 1509, Springer, Berlin, 1992, 285-293. MR 1185978 (93h:55012)
  • 12. C. A. McGibbon and J. Roitberg, Phantom maps and rational equivalences, Amer. J. Math. 116 (1994), 1365-1379. MR 1305869 (95j:55026)
  • 13. K. Morisugi, Projective elements in K-theory and self-maps of $ \Sigma {\mathbb{C}}P^{\infty }$, J. Math. Kyoto Univ. 38 (1998), 151-165. MR 1628087 (99g:55008)
  • 14. G. W. Whitehead, Elements of homotopy theory, GTM 61, Springer-Verlag, New York-Heidelberg-Berlin, 1978. MR 516508 (80b:55001)
  • 15. C. W. Wilkerson, Classification of spaces of the same $ n$-type for all $ n$, Proc. Amer. Math. Soc. 60 (1976), 279-285. MR 0474283 (57:13930)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P15, 55S37, 55P40

Retrieve articles in all journals with MSC (2000): 55P15, 55S37, 55P40


Additional Information

Dae-Woong Lee
Affiliation: Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
Email: dwlee@math.chonbuk.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-08-09666-4
Keywords: Same $n$-type, Aut, commutator, Samelson (Whitehead) product
Received by editor(s): February 28, 2008
Received by editor(s) in revised form: April 28, 2008
Published electronically: October 20, 2008
Additional Notes: This paper was (partially) supported by the Chonbuk National University funds for overseas research, 2008
Communicated by: Paul Goerss
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society