Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Eigenvalue estimates for submanifolds with locally bounded mean curvature in $ N \times \mathbb{R}$


Authors: G. Pacelli Bessa and M. Silvana Costa
Journal: Proc. Amer. Math. Soc. 137 (2009), 1093-1102
MSC (2000): Primary 53C40, 53C42; Secondary 58C40
DOI: https://doi.org/10.1090/S0002-9939-08-09680-9
Published electronically: October 21, 2008
MathSciNet review: 2457451
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N \times \mathbb{R}$, where $ N$ is an $ n$-dimensional complete Riemannian manifold with radial sectional curvature $ K_{N} \leq \kappa$. When the immersion is minimal our estimates are sharp. We also show that cylindrically bounded minimal surfaces have a positive fundamental tone.


References [Enhancements On Off] (What's this?)

  • 1. J. Barta, Sur la vibration fundamentale d'une membrane. C. R. Acad. Sci. 204 (1937), 472-473.
  • 2. Pierre H. Bérard, Spectral geometry: direct and inverse problems. Lect. Notes in Math. 1207, Springer-Verlag, 1986. MR 861271 (88f:58146)
  • 3. M. Berger, P. Gauduchon, and E. Mazet, Le spectre d'une variété riemannienne. Lect. Notes Math. 194, Springer-Verlag, Berlin-New York, 1971.MR 0282313 (43:8025)
  • 4. G. P. Bessa and J. F. Montenegro, Eigenvalue estimates for submanifolds with locally bounded mean curvature. Ann. Global Anal. and Geom. 24 (2003), 279-290. MR 1996771 (2004f:53068)
  • 5. G. P. Bessa and J. Fabio Montenegro, An extension of Barta's theorem and geometric applications. Ann. Global Anal. Geom. 31 (2007), no. 4, 345-362. MR 2325220 (2008e:53112)
  • 6. G. P. Bessa and J. Fabio Montenegro, On compact $ H$-hypersurfaces of $ N\times\mathbb{R}$. Geom. Dedicata 127 (2007), 1-5. MR 2338510
  • 7. A. Candel, Eigenvalue estimates for minimal surfaces in hyperbolic space. Trans. Amer. Math. Soc. 359 (2007), 3567-3575. MR 2302506 (2007m:53076)
  • 8. I. Chavel, Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, 115, Academic Press, Inc., 1984. MR 768584 (86g:58140)
  • 9. S. Y. Cheng, P. Li and S.-T. Yau, Heat equations on minimal submanifolds and their applications. Amer. J. Math. 106 (1984), 1033-1065. MR 761578 (85m:58171)
  • 10. L.-F. Cheung and P.-F. Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space. Math. Z. 236 (2001), 525-530. MR 1821303 (2002c:53094)
  • 11. L. Jorge and D. Koutroufiotis, An estimate for the curvature of bounded submanifolds. Amer. J. Math. 103 (1981), 711-725. MR 623135 (83d:53041b)
  • 12. L. Jorge and F. Xavier, A complete minimal surface in $ R\sp{3}$ between two parallel planes. Ann. of Math. (2) 112 (1980), no. 1, 203-206. MR 584079 (82e:53087)
  • 13. F. J. Lopez, F. Martın and S. Morales, Adding handles to Nadirashvili's surfaces. J. Diff. Geom. 60 (2002), 155-175. MR 1924594 (2003f:53013)
  • 14. F. J. Lopez, F. Martın and S. Morales, Complete nonorientable minimal surfaces in a ball of $ \mathbb{R}^{3}$. Trans. Amer. Math. Soc. 358 (2006), 3807-3820. MR 2219000 (2007a:53014)
  • 15. F. Martın and S. Morales, A complete bounded minimal cylinder in $ \mathbb{R}\sp 3$. Michigan Math. J. 47 (2000), no. 3, 499-514. MR 1813541 (2001m:53015)
  • 16. W. Meeks and H. Rosenberg, The theory of minimal surfaces in $ M^{2}\times \mathbb{R}$. Comment. Math. Helv. 80 (2005), no. 4, 811-858. MR 2182702 (2006h:53007)
  • 17. W. Meeks and H. Rosenberg, Stable minimal surfaces in $ M^{2}\times \mathbb{R}$. J. Differential Geom. 68 (2004), no. 3, 515-534. MR 2144539 (2006b:53007)
  • 18. N. Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces. Invent. Math. 126 (1996), 457-465. MR 1419004 (98d:53014)
  • 19. R. Schoen and S.-T. Yau, Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, vol. 1, International Press, Cambridge, MA, 1994. MR 1333601 (97d:53001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C40, 53C42, 58C40

Retrieve articles in all journals with MSC (2000): 53C40, 53C42, 58C40


Additional Information

G. Pacelli Bessa
Affiliation: The Abdus Salam International Centre for Theoretical Physics, 34014 Trieste, Italy
Address at time of publication: Department of Mathematics, Universidade Federal do Ceara-UFC, Campus do Pici, 60455-760 Fortaleza-CE, Brazil
Email: bessa@mat.ufc.br

M. Silvana Costa
Affiliation: Department of Engineering, Universidade Federal do Ceara-UFC, Campus Cariri, Av. Castelo Branco, 150, 60030-200 Juazeiro do Norte-CE, Brazil
Email: silvana_math@yahoo.com.br

DOI: https://doi.org/10.1090/S0002-9939-08-09680-9
Keywords: Fundamental tone estimates, minimal submanifolds, submanifolds with locally bounded mean curvature in $N\times \mathbb {R}$.
Received by editor(s): April 29, 2008
Published electronically: October 21, 2008
Additional Notes: The first author was partially supported by a CNPq-grant and ICTP Associate Schemes.
The second author was partially supported by a CNPq-scholarship
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society