Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A large family of pseudorandom binary lattices


Author: Huaning Liu
Journal: Proc. Amer. Math. Soc. 137 (2009), 793-803
MSC (2000): Primary 11K45
DOI: https://doi.org/10.1090/S0002-9939-08-09706-2
Published electronically: October 29, 2008
MathSciNet review: 2457416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently P. Hubert, C. Mauduit and A. Sárközy introduced and studied the notion of pseudorandomness of binary lattices and gave a pseudorandom binary lattice. Later in other papers C. Mauduit and A. Sárközy constructed some large families of ``good'' binary lattices. In this paper a large family of pseudorandom binary lattices is presented by using the multiplicative inverse and the quadratic character of finite fields.


References [Enhancements On Off] (What's this?)

  • 1. N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira and V. Rödl, Measures of pseudo- randomness for finite sequences: minimal values, Combinatorics, Probability and Computing, 15 (2006), pp. 1-29. MR 2195573 (2006j:60007)
  • 2. J. Cassaigne, C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences, VII: The measures of pseudorandomness, Acta Arithmetica, 103 (2002), pp. 97-118. MR 1904866 (2004c:11139)
  • 3. J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy, On finite pseudorandom binary sequences, III: The Liouville function, I, Acta Arithmetica, 87 (1999), pp. 367-390. MR 1671629 (2000c:11126)
  • 4. J. Cassaigne, S. Ferenczi, C. Mauduit, J. Rivat and A. Sárközy, On finite pseudorandom binary sequences, IV: The Liouville function, II, Acta Arithmetica, 95 (2000), pp. 343-359. MR 1785199 (2002c:11087)
  • 5. F. N. Castro and C. J. Moreno, Mixed exponential sums over finite fields, Proceedings of the American Mathematical Society, 128 (2000), pp. 2529-2537. MR 1690978 (2000m:11070)
  • 6. E. Fouvry, P. Michel, J. Rivat and A. Sárközy, On the pseudorandomness of the signs of Kloosterman sums, Journal of the Australian Mathematical Society, 77 (2004), pp. 425-436. MR 2099811 (2005h:11165)
  • 7. L. Goubin, C. Mauduit and A. Sárközy, Construction of large families of pseudorandom binary sequences, Journal of Number Theory, 106 (2004), pp. 56-69. MR 2049592 (2004m:11121)
  • 8. K. Gyarmati, On a family of pseudorandom binary sequences, Periodica Mathematica Hungarica, 49 (2004), pp. 45-63. MR 2106465 (2005h:11167)
  • 9. K. Gyarmati, Pseudorandom sequences constructed by the power generator, Periodica Mathematica Hungarica, 52 (2006), pp. 9-26. MR 2265647 (2007i:11110)
  • 10. P. Hubert, C. Mauduit and A. Sárközy, On pseudorandom binary lattices, Acta Arithmetica, 125 (2006), pp. 51-62. MR 2275217 (2007k:11124)
  • 11. H. Liu, New pseudorandom sequences constructed using multiplicative inverses, Acta Arithmetica, 125 (2006), pp. 11-19. MR 2275214 (2007i:11111)
  • 12. H. Liu, New pseudorandom sequences constructed by quadratic residues and Lehmer numbers, Proceedings of the American Mathematical Society, 135 (2007), pp. 1309-1318. MR 2276639 (2007j:11099)
  • 13. H. Liu, A family of pseudorandom binary sequences constructed by the multiplicative inverse, Acta Arithmetica, 130 (2007), pp. 167-180. MR 2357654 (2008i:11103)
  • 14. H. Liu and C. Yang, On a problem of D. H. Lehmer and pseudorandom binary sequences, Bulletin of the Brazilian Mathematical Society, 39 (2008), pp. 387-399.
  • 15. S. R. Louboutin, J. Rivat and A. Sárközy, On a problem of D. H. Lehmer, Proceedings of the American Mathematical Society, 135 (2007), pp. 969-975. MR 2262896 (2007g:11089)
  • 16. C. Mauduit, J. Rivat and A. Sárközy, Construction of pseudorandom binary sequences using additive characters, Monatshefte für Mathematik, 141 (2004), pp. 197-208. MR 2042211 (2005a:11117)
  • 17. C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences, I: Measure of pseudorandomness, the Legendre symbol, Acta Arithmetica, 82 (1997), pp. 365-377. MR 1483689 (99g:11095)
  • 18. C. Mauduit and A. Sárközy, On the measures of pseudorandomness of binary sequences, Discrete Mathematics, 271 (2003), pp. 195-207. MR 1999543 (2004e:11081)
  • 19. C. Mauduit and A. Sárközy, Construction of pseudorandom binary sequences by using the multiplicative inverse, Acta Mathematica Hungarica, 108 (2005), pp. 239-252. MR 2162562 (2006c:11092)
  • 20. C. Mauduit and A. Sárközy, On large families of pseudorandom binary lattices, Uniform Distribution Theory, 2 (2007), pp. 23-37. MR 2318530 (2008h:11079)
  • 21. C. Mauduit and A. Sárközy, Construction of pseudorandom binary lattices by using the multiplicative inverse, Monatshefte für Mathematik, 153 (2008), pp. 217-231. MR 2379668
  • 22. G. I. Perel$ '$muter, Estimation of a sum along an algebraic curve, Matematicheskie Zametki, 5 (1969), pp. 373-380. MR 0241424 (39:2764)
  • 23. A. Sárközy, A finite pseudorandom binary sequence, Studia Scientiarum Mathematicarum Hungarica, 38 (2001), pp. 377-384. MR 1877793 (2003j:11082)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11K45

Retrieve articles in all journals with MSC (2000): 11K45


Additional Information

Huaning Liu
Affiliation: Department of Mathematics, Northwest University, Xi’an, Shaanxi, People’s Republic of China
Email: hnliumath@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-08-09706-2
Keywords: Pseudorandom binary lattice, quadratic character, multiplicative inverse
Received by editor(s): November 28, 2007
Published electronically: October 29, 2008
Additional Notes: This research was supported by the National Grand Fundamental Research 973 Programs of China under Grants 2007CB807902 and 2007CB807903.
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society