Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



AHS-structures and affine holonomies

Author: Andreas Cap
Journal: Proc. Amer. Math. Soc. 137 (2009), 1073-1080
MSC (2000): Primary 53C29, 53C10; Secondary 53C15, 53C30, 53B15
Published electronically: October 22, 2008
MathSciNet review: 2457449
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a large class of non-metric, non-symplectic affine holonomies can be realized, uniformly and without case by case considerations, by Weyl connections associated to the natural AHS-structures on certain generalized flag manifolds.

References [Enhancements On Off] (What's this?)

  • 1. M. Berger, Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279-330. MR 0079806 (18:149a)
  • 2. M. Cahen, L.J. Schwachhöfer, special symplectic connections, preprint, math.DG/0402221
  • 3. A. Čap, H. Schichl, Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29, no. 3 (2000), 453-505. MR 1795487 (2002f:53036)
  • 4. A. Čap, J. Slovák, Weyl structures for parabolic geometries. Math. Scand. 93, 1 (2003), 53-90. MR 1997873 (2004j:53065)
  • 5. A. Čap, J. Slovák, V. Souček, Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections. Acta Math. Univ. Comenian. 66 (1997), 203-220. MR 1620484 (2000a:53045)
  • 6. S. Kobayashi, T. Nagano, On filtered Lie algebras and geometric structures, I, II. J. Math. Mech. 13 (1964), 875-907; J. Math. Mech. 14 (1965), 513-521. MR 0168704 (29:5961); MR 0185042 (32:2512)
  • 7. S.A. Merkulov, L.J. Schwachhöfer, Classification of irreducible holonomies of torsion-free affine connections. Ann. Math. 150 (1999) 77-149; Addendum: Ann. Math. 150 (1999) 1177-1179. MR 1715321 (2000m:53065a); MR 1740981 (2000m:53065b)
  • 8. K. Yamaguchi, Differential systems associated with simple graded Lie algebras. Adv. Stud. Pure Math. 22 (1993), 413-494. MR 1274961 (95g:58263)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C29, 53C10, 53C15, 53C30, 53B15

Retrieve articles in all journals with MSC (2000): 53C29, 53C10, 53C15, 53C30, 53B15

Additional Information

Andreas Cap
Affiliation: Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A–1090 Wien,Austria – and – International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, A–1090 Wien, Austria

Received by editor(s): April 22, 2008
Published electronically: October 22, 2008
Additional Notes: The author was supported by project P 19500–N13 of the “Fonds zur Förderung de wissenschaftlichen Forschung” (FWF)
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society