A SHORT PROOF OF PITT'S COMPACTNESS THEOREM

SYLVAIN DELPECH

(Communicated by Nigel J. Kalton)

Abstract. We give a short proof of Pitt's theorem that every bounded linear operator from \(\ell_p \) or \(c_0 \) into \(\ell_q \) is compact whenever \(1 \leq q < p < \infty \).

A bounded linear operator between two Banach spaces \(X \) and \(Y \) is said to be compact if it maps the closed unit ball of \(X \) into a relatively compact subset of \(Y \).

Theorem (Pitt; see for example [1], p. 175). Let \(1 \leq q < p \leq +\infty \), and put \(X_p = \ell_p \) if \(p < +\infty \) and \(X_\infty = c_0 \). Then every bounded linear operator from \(X_p \) into \(\ell_q \) is compact.

Proof. Let \(T : X_p \to \ell_q \) be a norm-one operator. As \(1 < p \), the dual of \(X_p \) is separable. Hence every bounded sequence in \(X_p \) has a weakly Cauchy subsequence. Thus, for proving the compactness of \(T \), it is enough to show that \(T \) is weak-to-norm continuous. So, let us consider a weakly null sequence \((h_n) \) in \(X_p \). We have to show that \(\lim_{n \to \infty} \|T(h_n)\| = 0 \). We claim that

1. for every \(x \in c_0 \) and for every weakly null sequence \((w_n) \) in \(c_0 \),
 \[
 \limsup_{n \to \infty} \|x + w_n\| = \max(\|x\|, \limsup_{n \to \infty} \|w_n\|),
 \]
2. for every \(x \in \ell_r \), \(1 \leq r < \infty \), and for every weakly null sequence \((w_n) \) in \(\ell_r \),
 \[
 \limsup_{n \to \infty} \|x + w_n\|^r = \|x\|^r + \limsup_{n \to \infty} \|w_n\|^r.
 \]

Indeed this is obvious when \(x \) is finitely supported, because the coordinates of \((w_n) \) along the support of \(x \) tend to 0 in norm. The general case is true by the density of finitely supported elements in \(X_p \) and since the norm is a Lipschitzian function.

Fix \(0 < \varepsilon < 1 \). By definition of the norm of \(T \), there exists \(x_\varepsilon \in X_p \) such that \(\|x_\varepsilon\| = 1 \) and \(1 - \varepsilon \leq \|T(x_\varepsilon)\| \leq 1 \). Moreover, for all \(n \in \mathbb{N} \) and for all \(t > 0 \)

\[
(0) \quad \|T(x_\varepsilon) + T(th_n)\| \leq \|x_\varepsilon + th_n\|.
\]

In the left-hand side of \((0) \), we apply claim (2) in \(\ell_q \), with \(x = T(x_\varepsilon) \) and the weakly null sequence \((T(th_n)) \).

First, assume \(p < +\infty \). We apply claim (2) to the right-hand side of \((0) \) with \(r = p \), \(x = x_\varepsilon \) and the weakly null sequence \((h_n) \) to obtain

\[
\left(\left\| T(x_\varepsilon) \right\|^p + t^p \limsup_{n \to \infty} \|T(h_n)\| \right)^\frac{1}{p} \leq \left(\|x_\varepsilon\|^p + t^p \limsup_{n \to \infty} \|h_n\|^p \right)^\frac{1}{p}.
\]

Received by the editors February 6, 2008, and, in revised form, April 16, 2008.

2000 Mathematics Subject Classification. Primary 46B25.

Key words and phrases. \(\ell_p \) space, \(c_0 \) space, compact operator.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication
Recall that \(\| x_\varepsilon \| = 1, 1 - \varepsilon \leq \| T(x_\varepsilon) \| \leq 1 \) and that \((h_n)\) is weakly convergent, thus bounded by some \(M > 0 \). This gives
\[
\limsup_{n \to \infty} \| T(h_n) \|^q \leq \frac{1}{t^q} \left[(1 + t^p M^p)^{q/p} - (1 - \varepsilon)^q \right].
\]
Taking \(t = \varepsilon^{\frac{1}{p}} \) here, we get
\[
\limsup_{n \to \infty} \| T(h_n) \|^q \leq \frac{1}{\varepsilon^{q/p}} \left[1 + \frac{2}{p} M^p \varepsilon - (1 - q^q) + o(\varepsilon) \right].
\]
Now, letting \(\varepsilon \to 0 \) here, we get that \(\limsup_{n \to \infty} \| T(h_n) \|^q \leq 0 \), and therefore the sequence \((T(h_n))\) norm-converges to 0.

Second, assume \(p = +\infty \). We apply claim (1) to the right-hand side of (0) to obtain
\[
\limsup_{n \to \infty} \| T(h_n) \|^q \leq \frac{1}{t^q} \left[\max (1, t^q M^q) - (1 - \varepsilon)^q \right].
\]
Considering here any \(0 < \varepsilon < M^{-2q} \) and then taking \(t = \varepsilon^{\frac{1}{q}} \), we get that
\[
\limsup_{n \to \infty} \| T(h_n) \|^q \leq \frac{1}{\varepsilon^{1/2}} \left[1 - (1 - \varepsilon)^q \right].
\]
Now, letting \(\varepsilon \to 0 \) here, we get as before that the sequence \((T(h_n))\) norm-converges to 0. □

The framework of this paper was inspired by [2]. The proof given in [2], devoted to the case \(p < +\infty \), uses Stegall’s variational principle.

REFERENCES

Institut de Mathématiques de Bordeaux, UMR 5251, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France

E-mail address: sylvain.delpech@gmail.com