Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Congruence properties of Hermitian modular forms


Authors: Toshiyuki Kikuta and Shoyu Nagaoka
Journal: Proc. Amer. Math. Soc. 137 (2009), 1179-1184
MSC (2000): Primary 11F33; Secondary 11F55
DOI: https://doi.org/10.1090/S0002-9939-08-09646-9
Published electronically: September 25, 2008
MathSciNet review: 2465638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the existence of a modular form satisfying a certain congruence relation. The existence of such modular forms plays an important role in the determination of the structure of a ring of modular forms modulo $ p$. We give a criterion for the existence of such a modular form in the case of Hermitian modular forms.


References [Enhancements On Off] (What's this?)

  • 1. Eva Bayer-Fluckiger, Definite unimodular lattices having an automorphism of given characteristic polynomial, Comment. Math. Helv. 59 (1984), no. 4, 509–538. MR 780074, https://doi.org/10.1007/BF02566364
  • 2. Siegfried Böcherer and Shoyu Nagaoka, On mod 𝑝 properties of Siegel modular forms, Math. Ann. 338 (2007), no. 2, 421–433. MR 2302069, https://doi.org/10.1007/s00208-007-0081-7
  • 3. Hel Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827–855. MR 0032699, https://doi.org/10.2307/1969581
  • 4. David Mordecai Cohen and H. L. Resnikoff, Hermitian quadratic forms and Hermitian modular forms, Pacific J. Math. 76 (1978), no. 2, 329–337. MR 506135
  • 5. Eberhard Freitag, Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1967 (1967), 3–49 (German). MR 0214541
  • 6. Jean-Pierre Serre, Formes modulaires et fonctions zêta 𝑝-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 191–268. Lecture Notes in Math., Vol. 350 (French). MR 0404145
    J.-P. Serre, Correction to: “Formes modulaires et fonctions zêta 𝑝-adiques” (Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191–268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 149–150. Lecture Notes in Math., Vol. 476. MR 0404146
  • 7. H. P. F. Swinnerton-Dyer, On 𝑙-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972) Springer, Berlin, 1973, pp. 1–55. Lecture Notes in Math., Vol. 350. MR 0406931
    H. P. F. Swinnerton-Dyer, Correction to: “On 𝑙-adic representations and congruences for coefficients of modular forms” (Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 1–55, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 149. Lecture Notes in Math., Vol. 476. MR 0406932

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F33, 11F55

Retrieve articles in all journals with MSC (2000): 11F33, 11F55


Additional Information

Toshiyuki Kikuta
Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email: kikuta@math.kindai.ac.jp

Shoyu Nagaoka
Affiliation: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email: nagaoka@math.kindai.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-08-09646-9
Keywords: Congruences for modular and $ p$-adic modular forms
Received by editor(s): April 1, 2008
Published electronically: September 25, 2008
Additional Notes: The second author was supported in part by Grant-in-Aid for Scientific Research 19540061.
Dedicated: In celebration of Tomoyoshi Ibukiyama’s 60th birthday
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.