Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pfister's theorem for orthogonal involutions of degree 12


Authors: Skip Garibaldi and Anne Quéguiner-Mathieu
Journal: Proc. Amer. Math. Soc. 137 (2009), 1215-1222
MSC (2000): Primary 20G15; Secondary 16W10, 11E04
DOI: https://doi.org/10.1090/S0002-9939-08-09674-3
Published electronically: October 2, 2008
MathSciNet review: 2465642
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the fact that a projective half-spin representation of $ \operatorname{Spin}_{12}$ has an open orbit to generalize Pfister's result on quadratic forms of dimension 12 in $ I^3$ to orthogonal involutions.


References [Enhancements On Off] (What's this?)

  • [A] A.A. Albert, Structure of algebras, AMS Coll. Pub., vol. 24, AMS, Providence, RI, 1961, revised printing. MR 0123587 (23:A912)
  • [BP] E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $ \le 2$, Invent. Math. 122 (1995), 195-229. MR 1358975 (96i:11042)
  • [BST] E. Bayer-Fluckiger, D.B. Shapiro, and J.-P. Tignol, Hyperbolic involutions, Math. Z. 214 (1993), no. 3, 461-476. MR 1245206 (94j:16060)
  • [Be] G. Berhuy, Cohomological invariants of quaternionic skew-Hermitian forms, Arch. Math. (Basel) 88 (2007), no. 5, 434-447. MR 2316889 (2008d:12005)
  • [D] J. Dieudonné, Les extensions quadratiques des corps non commutatifs et leurs applications, Acta Math. 87 (1952), 175-242. MR 0049873 (14:239e)
  • [ET] M.A. Elomary and J.-P. Tignol, Classification of quadratic forms over skew fields of characteristic $ 2$, J. Algebra 240 (2001), 366-392. MR 1830558 (2002f:11039)
  • [GaC] S. Garibaldi, Cohomological invariants: Exceptional groups and spin groups, with an appendix by Detlev W. Hoffmann, Memoirs Amer. Math. Soc., to appear.
  • [GaO] -, Orthogonal involutions on algebras of degree $ 16$ and the Killing form of $ {E}_8$, with an appendix by Kirill Zainoulline, preprint, 2008.
  • [Gi] P. Gille, Le problème de Kneser-Tits, Séminaire Bourbaki, 60ème année, no. 983, 2006-2007.
  • [I] J.-I. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028. MR 0277558 (43:3291)
  • [KMRT] M.-A. Knus, A.S. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Colloquium Publications, vol. 44, Amer. Math. Soc., Providence, RI, 1998. MR 1632779 (2000a:16031)
  • [L] T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, Amer. Math. Soc., Providence, RI, 2005. MR 2104929 (2005h:11075)
  • [Pf] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132. MR 0200270 (34:169)
  • [PR] V.P. Platonov and A. Rapinchuk, Algebraic groups and number theory, Academic Press Inc., Boston, MA, 1994. MR 1278263 (95b:11039)
  • [Q] A. Quéguiner-Mathieu, Invariants cohomologiques: des formes quadratiques aux algèbres à involution, Théorie des nombres (Besançon, 2002), Publ. Math. UFR Sci. Tech. Besançon, Univ. France-Comté, 2002. MR 1990438 (2004h:11033)
  • [QT] A. Quéguiner-Mathieu and J.-P. Tignol, Discriminant and Clifford algebras, Math. Zeit. 240 (2002), 345-384. MR 1900315 (2003e:16023)
  • [R] M. Rost, On $ 14$-dimensional quadratic forms, their spinors, and the difference of two octonion algebras, preprint, March 1999.
  • [SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 0430336 (55:3341)
  • [Ti66] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., vol. IX, Amer. Math. Soc., Providence, RI, 1966, pp. 32-62. MR 0224710 (37:309)
  • [Ti71] -, Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220. MR 0277536 (43:3269)
  • [To] B. Totaro, The torsion index of $ {E}_8$ and other groups, Duke Math. J. 129 (2005), 219-248. MR 2165542 (2006f:57039a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20G15, 16W10, 11E04

Retrieve articles in all journals with MSC (2000): 20G15, 16W10, 11E04


Additional Information

Skip Garibaldi
Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: skip@member.ams.org

Anne Quéguiner-Mathieu
Affiliation: Université Paris 13 (LAGA), CNRS (UMR 7539), Université Paris 12 (IUFM), 93430 Villetaneuse, France
Email: queguin@math.univ-paris13.fr

DOI: https://doi.org/10.1090/S0002-9939-08-09674-3
Received by editor(s): April 10, 2008
Published electronically: October 2, 2008
Communicated by: Martin Lorenz
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society