THE BOUNDING GENERA AND w-INVARIENTS

YOSHIHIRO FUKUMOTO

(Communicated by Daniel Ruberman)

Abstract. In this paper, we give an estimate from below of the bounding genera for homology 3-spheres defined by Y. Matsumoto in terms of w-invariants. In particular, combining with Matsumoto’s estimates we determine the values of the bounding genera for several infinite families of Brieskorn homology 3-spheres.

1. Introduction

In this paper, we give an estimate from below of the bounding genera for homology 3-spheres defined by Y. Matsumoto in terms of w-invariants. In particular, combining with Matsumoto’s estimates we determine the values of the bounding genera for several infinite families of Brieskorn homology 3-spheres.

In 1982, Y. Matsumoto introduced the notion of a bounding genus for integral homology 3-spheres to study the kernel of the Rohlin invariant. Let Γ be a nonsingular symmetric bilinear form over \mathbb{Z}. A homology 3-sphere Σ is said to bound the form Γ if and only if Σ bounds a compact, oriented, homologically 1-connected smooth 4-manifold W whose intersection form defined on $H_2(W)$ is isomorphic to Γ. Here a topological space X is said to be homologically 1-connected if it is connected and $H_1(X) = \{0\}$. Let H be the hyperbolic form, i.e., the intersection form of $S^2 \times S^2$. Then the bounding genus is defined as follows.

Definition 1.1 (Y. Matsumoto [11]). Let Σ be a homology 3-sphere. Then the bounding genus $|\Sigma|$ of Σ is defined to be

$$|\Sigma| := \begin{cases} \min \{ n \mid \Sigma \text{ bounds } nH \}, & \mu(\Sigma) = 0, \\ +\infty, & \mu(\Sigma) = 1, \end{cases}$$

where $\mu(\Sigma)$ is the Rohlin invariant of Σ.

Remark 1.2. If the Rohlin invariant $\mu(\Sigma)$ of the homology 3-sphere Σ vanishes, then Σ bounds a smooth spin 4-manifold W with signature $\text{Sign}(W)$ divisible by 16. By taking the connected sum with several copies of K3 surfaces or the K3 surface with reversed orientation, if necessary, we may assume that $\text{Sign}(W) = 0$ and hence W is an indefinite spin 4-manifold. It is known that the intersection form of indefinite spin 4-manifolds is isomorphic to the direct sum of several copies of the hyperbolic form H.
Remark 1.3. The bounding genus $|\Sigma|$ gives a homology cobordism invariant; i.e., it gives a map $|\cdot|: \Theta^H_3 \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$ from the homology cobordism group Θ^H_3 of homology 3-spheres.

Remark 1.4. The bounding genus $|\Sigma|$ satisfies the triangle inequality $|\Sigma + \Sigma'| \leq |\Sigma| + |\Sigma'|$ and in fact gives a distance in Θ^H_3 allowing the value to be infinity.

Remark 1.5. The notion of 1-connected bounding genus $\|\Sigma\|$ is also defined by replacing “homological 1-connectedness” by ordinary “1-connectedness” in the definition of the bounding genus $|\Sigma|$. Clearly the inequality $|\Sigma| \leq \|\Sigma\|$ holds.

Matsumoto gave upper estimates on the bounding genera for several families of homology 3-spheres using Dehn-Kirby calculus. For example, he gave the following estimates.

Proposition 1.6 (Y. Matsumoto [11, §4, Proposition 4.4]). $|\Sigma(2,7,14m - 1)| \leq 3$ for any positive odd integer m.

For example, the bounding genus of the Brieskorn homology 3-sphere $\Sigma(2,7,13)$ satisfies $|\Sigma(2,7,13)| \leq 3$. Matsumoto called this estimate “hard-to-improve”. In fact, R. Kirby proved that $\Sigma(2,7,13)$ bounds the plumbed 4-manifold $P(\Gamma_{16})$ associated to the intersection form Γ_{16}. Hence if $\Sigma(2,7,13)$ bounds $2 \cdot H$, then the closed 4-manifold $M = -P(\Gamma_{16}) \cup |2 \cdot H|$ obtained by gluing $-P(\Gamma_{16})$ and $|2 \cdot H|$ along the boundary $\Sigma(2,7,13)$ leads to the inequality

$$\frac{11}{8} |\text{Sign}(M)| = \frac{11}{8} \cdot |\Sigma(2,7,13)| \geq 16 > 16 = b_2 (M)$$

which violates the following $11/8$-conjecture proposed by Y. Matsumoto [11].

Conjecture 1.7 (Y. Matsumoto [11]). Let M be a closed spin 4-manifold. Then the following inequality holds:

$$\frac{11}{8} |\text{Sign}(M)| \leq b_2 (M).$$

To determine the bounding genera we need an estimate from below. In fact, M. Furuta proved an inequality called the $10/8$-inequality close to the $11/8$-conjecture by using the finite-dimensional approximation of the Seiberg-Witten monopole equation on closed spin 4-manifolds.

Theorem 1.8 (M. Furuta [9]). For any closed spin 4-manifold M with $\text{Sign}(M) \neq 0$, the following inequality holds:

$$\frac{10}{8} |\text{Sign}(M)| + 2 \leq b_2 (M).$$

If we apply this inequality to $M = -P(\Gamma_{16}) \cup |2 \cdot H|$, then we have the inequality

$$\frac{10}{8} |\Sigma(2,7,13)| + 2 = 22 > 20 = 16 + 4$$

violating the $10/8$-inequality above and hence $|\Sigma(2,7,13)| = 3$. For other Brieskorn homology 3-spheres Σ, we need to find “good” spin 4-manifolds such as $P(\Gamma_{16})$ which Σ bounds.

In a joint work with M. Furuta [7], we used a V-manifold version of the $10/8$-inequality to define a homology cobordism invariant for a class of homology 3-spheres which we call the w-invariant. The notion of V-manifold is defined by I. Satake [15] as a generalization of manifolds which allows neighborhoods to be...
the quotients of Euclidean spaces divided by finite group actions. The \(w \)-invariant can be considered as the Seiberg-Witten theory counterpart of the invariant \([3]\) of R. Fintushel and R. Stern defined by using the Donaldson theory. In fact, the \(w \)-invariant is defined for a triple \((\Sigma, X, c)\) composed of a homology 3-sphere \(\Sigma\), a compact smooth spin 4-V-manifold \(X\) with boundary \(\Sigma\), and a \(V\)-spin\(^c\) structure \(c\) on \(X\), and it takes values in the integers, \(w(\Sigma, X, c) \in \mathbb{Z}\). If the \(V\)-spin\(^c\) structure \(c\) comes from the \(V\)-spin structure on \(X\), then the value \(w(\Sigma, X, c)\) modulo 2 is equal to Rohlin’s \(\mu\)-invariant.

By using this invariant \(w(\Sigma, X, c)\), we give the following estimate on bounding genera from below whose proof will be given in Section 2.

Theorem 1.9. Let \(\Sigma\) be an integral homology 3-sphere bounding a compact smooth spin 4-V-manifold \(X\) with \(V\)-spin\(^c\) structure \(c\) which comes from a \(V\)-spin structure on \(X\). Then the following inequalities hold:

1. If \(w(\Sigma, X, c) > 0\), then \(|\Sigma| \geq w(\Sigma, X, c) - b_2^+ (X) + 1\).
2. If \(w(\Sigma, X, c) < 0\), then \(|\Sigma| \geq -w(\Sigma, X, c) - b_2^- (X) + 1\).

As in the case of smooth manifolds, we need to find a “good” spin 4-V-manifold \(X\) to give an efficient estimate. However, for Seifert homology 3-spheres \(\Sigma = \Sigma(a_1, \ldots, a_n)\), we can take \(X\) to be the canonical \(D^2\)-\(V\)-bundle \(X \to S^2\) over \(S^2\) associated to the Seifert fibration \(\Sigma \to S^2\). Then \(X\) is a 4-V-manifold with \(n\)-singular points which are cones over lens spaces and with \(b_2^+ (X) = 0\), \(b_2^- (X) = 1\). If one of the \(a_i\)'s is even, then \(X\) admits a unique \(V\)-spin structure \(c\) on \(X\). For example, the value of the \(w\)-invariant of the Brieskorn homology 3-sphere \(\Sigma(2, 7, 13)\) is \(w(\Sigma(2, 7, 13), X, c) = 2 > 0\). Hence by Theorem 1.9 we see that \(|\Sigma(2, 7, 13)| \geq 2 - 0 + 1 = 3\). Therefore the bounding genus of \(\Sigma(2, 7, 13)\) is certainly \(|\Sigma(2, 7, 13)| = 3\). In Section 3 we will prove the following:

Proposition 1.10. \(|\Sigma(2, 7, 14m - 1)| = 3\) for any positive odd integer \(m\).

R. Fintushel and R. Stern defined the invariant \(R(a_1, \ldots, a_n)\) for Seifert homology 3-spheres \(\Sigma(a_1, \ldots, a_n)\) by using the Donaldson theory and proved that if \(R(a_1, \ldots, a_n) > 0\), then \(\Sigma(a_1, \ldots, a_n)\) cannot be the boundary of an acyclic 4-manifold \([3]\). Hence if \(R(a_1, \ldots, a_n) > 0\), then we can show that \(|\Sigma(a_1, \ldots, a_n)| \geq 1\). Matsumoto proved for example that \(|\Sigma(2, 3, 12k - 1)| \leq 1\), whereas the \(w\)-invariant of \(\Sigma(2, 3, 11)\) is zero, and hence the above Theorem 1.9 cannot be applied. However we see that \(R(2, 3, 11) > 0\) and therefore \(|\Sigma(2, 3, 11)| = 1\). In Section 3 we will prove the following:

Proposition 1.11. \(|\Sigma(2, 3, 12k - 1)| = 1\) for any non-negative integer \(k\).

2. Bounding genera and \(w\)-invariants

First we recall the \(V\)-manifold version of the 10/8-inequality.

Theorem 2.1 (7). Let \(X\) be a closed smooth spin 4-V-manifold. Fix a Riemannian \(V\)-metric on \(X\) and let \(D(X)\) be the positive chiral Dirac operator. Suppose the \(V\)-index of the Dirac operator is positive: \(\text{ind}_V D(X) > 0\). Then the following inequality holds:

\[
\text{ind}_V D(X) + 1 \leq b_2^+ (X).
\]

The \(w\)-invariant is defined as follows.
Definition 2.2. Let \((\Sigma, X, c)\) be a triple composed of a homology 3-sphere \(\Sigma\), a compact smooth spin 4-V-manifold \(X\) with boundary \(\partial X \cong \Sigma\), and a \(V\)-spin\(^c\) structure \(c\) on \(X\). Then we define
\[
w(\Sigma, X, c) := \text{ind}_V D(X \cup_\Sigma W) + \frac{\text{Sign}(W)}{8},
\]
where \(W\) is a smooth spin 4-manifold with boundary \(\partial W \cong -\Sigma\).

Remark 2.3. \(w(\Sigma, X, c)\) does not depend on the choice of \(W\) and its spin structure by the excision properties of \(V\)-indices and the fact that the \(L\)-genus is \((-8)\)-times the \(\hat{A}\)-genus. Moreover, if the \(V\)-spin\(^c\) structure \(c\) comes from a \(V\)-spin structure, then \(w(\Sigma, X, c)\) may depend on the choice of \(X\) and \(c\), but Theorem 2.1 implies a homology cobordism invariance of \(w(\Sigma, X, c)\) in a certain class of homology 3-spheres \(\Sigma\) including the set of all Seifert homology 3-spheres [7].

By using this Theorem 2.1, we give a proof of Theorem 1.9.

Proof of Theorem 1.9. Let \(m = |\Sigma|\) be the bounding genus of \(\Sigma\). Then \(\Sigma\) bounds a homologically 1-connected compact oriented smooth spin 4-manifold \(W_m\) with intersection form \(mH\). This implies that \(b_2^+(W_m) = m\) and \(\text{Sign} W_m = 0\). On the other hand, let \(X\) be a closed spin 4-V-manifold \(X\) with \(V\)-spin structure \(c\) with boundary \(\partial X \cong \Sigma\). Let \(Z\) be a closed spin 4-V-manifold obtained by gluing \(X\) and \(-W_m\) along the boundary \(\Sigma\). Then we have \(b_2^+(Z) = b_2^+(X) + m\). Note that
\[
w(\Sigma, X, c) = \text{ind}_V D(Z) + \frac{\text{Sign} W_m}{8} = \text{ind}_V D(Z).
\]
Suppose that \(w(\Sigma, X, c) > 0\). Then by Theorem 2.1 we have
\[w(\Sigma, X, c) = \text{ind}_V D(Z) \leq b_2^+(Z) - 1 = b_2^+(X) + m - 1.\]
Similarly, if \(w(\Sigma, X, c) < 0\), then we apply Theorem 2.1 by replacing \(X\) with \(-X\) and by noting \(b_2^+(-Z) = b_2^-(Z)\) and \(\text{ind}_V D(-Z) = -\text{ind}_V D(Z)\) to get
\[-w(\Sigma, X, c) = -\text{ind}_V D(Z) = \text{ind}_V D(-Z) \leq b_2^+(-Z) - 1 = b_2^-(Z) - 1 = b_2^-(X) + m - 1.
\]
Hence the assertion follows. \(\square\)

3. Bounding genera of Brieskorn homology 3-spheres

In this section, we calculate \(w\)-invariants of Brieskorn homology 3-spheres to give estimates of bounding genera from below, and combining with Matsumoto’s result we determine the bounding genera for several examples of Brieskorn homology 3-spheres.

The explicit formula of the \(w\)-invariant for the Brieskorn homology 3-spheres is given in a joint work with M. Furuta [7], and more generally, the invariant for the homology 3-spheres of plumbing type [13] is calculated in [6] by using the Kawasaki \(V\)-index formula [10]. In fact, the \(w\)-invariant of plumbed homology 3-spheres \(\Sigma(\Gamma)\) is essentially equal to the \(\mu\)-invariant defined by W. Neumann [12] and L. Siebenmann [17] as follows.
Theorem 3.1 (N. Saveliev [16], cf. Y. Fukumoto-M. Furuta-M. Ue [8], [5]). Let \(\Sigma(\Gamma) \) be a plumbed homology 3-sphere associated to a weighted tree graph \(\Gamma \). Then there exists a decoration \(\hat{\Gamma} \) of \(\Gamma \) and a V-spin structure \(\hat{c} \) on the associated plumbed 4-V-manifold \(P(\hat{\Gamma}) \) such that

\[
w(\Sigma(\Gamma), P(\hat{\Gamma}), \hat{c}) = -\bar{\mu}(\Sigma(\Gamma)).
\]

To apply Theorem 1.9 efficiently, we must find a “good” spin 4-V-manifold \(X \) to evaluate the \(w \)-invariant \(w(\Sigma, X, c) \). For Seifert homology 3-spheres \(\Sigma = \Sigma(a_1, \ldots, a_n) \), we can take the canonical V-manifold \(X \) to be the total space of the \(D^2 \)-bundle over the V-sphere \(S^2 \) associated with the Seifert fibration \(\Sigma \to S^2 \) which can be regarded as an \(S^1 \)-V-bundle over a V-sphere \(S^2 \). If one of the \(a_i \)'s is even, then \(X \) admits a unique V-spin structure \(c \). In this case, we can take a spin resolution \(P(\Gamma) \) of \(X \) with an even weighted star-shaped graph \(\Gamma \) which satisfies \(\Sigma(\Gamma) \cong \Sigma \). Then a decoration \(\hat{\Gamma} \) of \(\Gamma \) is obtained by drawing circles enclosing linear arms emanating from the central vertex, and the plumbed V-manifold \(P(\hat{\Gamma}) \) is diffeomorphic to \(X \) with induced V-spin structure \(\hat{c} \) isomorphic to \(c \). Then by Theorem 3.1, we have \(w(\Sigma, P(\hat{\Gamma}), \hat{c}) = -\bar{\mu}(\Sigma(\Gamma)) \). When all \(a_i \)'s are odd, we must take other choices of \(X \), such as plumbed V-manifolds \(P(\hat{\Gamma}) \) for some decorated plumbing graph \(\hat{\Gamma} \) or “4-dimensional Seifert fibrations” [8].

In the following, we list several results by Y. Matsumoto [11] of estimates on \(w \)-invariants to determine the bounding genera.

Proposition 3.2 ([11], §4, Proposition 4.4]). Let \(p, q, m \) be positive integers with \(\gcd(p, q) = 1 \). Then

1. \(||\Sigma(p, q, pqm \pm 1)|| \leq 1 \) for \(m \) even;
2. if \(m \) is odd and \(\text{Arf}(K(p, q)) = 0 \), then

\[
||\Sigma(p, q, pqm \pm 1)|| \leq (p - 1)(q - 1)/2.
\]

Remark 3.3. The Arf invariant of the \((p, q) \)-torus knot \(K(p, q) \) is as follows [11], §4, Remark):

\[
\text{Arf}(K(p, q)) = \text{Arf}(K(q, p)) = \begin{cases}
\frac{1 - p^2}{8} \pmod{2}, & p: \text{odd}, q: \text{even}, \\
0, & p, q: \text{odd}.
\end{cases}
\]

Example 3.4. \(||\Sigma(2, 3, 11)|| \leq 1, ||\Sigma(2, 7, 13)|| \leq 3.\)

As an application of Theorem 1.9 in this case, we have the following:

Proposition 3.5. Let \(p, q \) be coprime positive integers and \(m \) be a positive odd integer.

1. If \(w(p, q, pq \pm 1) > 0 \), then

\[
||\Sigma(p, q, pqm \pm 1)|| \geq w(p, q, pq \pm 1) + 1;
\]

and

2. if \(w(p, q, pq \pm 1) < 0 \), then

\[
||\Sigma(p, q, pqm \pm 1)|| \geq -w(p, q, pq \pm 1).
\]

Proof. Let \(k \) be a non-negative integer such that \(m = 2k + 1 \). Let \(X \) be the disk \(V \)-bundle over \(S^2 \) associated with the Seifert fibration \(\Sigma(p, q, pqm \pm 1) \). Then \(b_2^+(X) = 0 \) and \(b_2^-(X) = 1 \). Since one of the \(p, q, pqm \pm 1 \) is even, \(X \) admits
a unique V-spin structure. By Theorem 3.3 and a formula of W. Neumann, $\bar{\mu}(\Sigma(p,q,r)) = \bar{\mu}(\Sigma(p,q,r + 2kpq))$ for any non-negative integer k, we have
\[
w(p,q,pqm \pm 1) = w(p,q,pq(2k + 1) \pm 1) = w(p,q,pq \pm 1 + 2kpq) = -\bar{\mu}(\Sigma(p,q,pq \pm 1 + 2kpq)) = -\bar{\mu}(\Sigma(p,q,pq \pm 1)) = w(p,q,pq \pm 1).
\]
Hence the assertion follows. \hfill \qed

The following is an application of Proposition 3.5.

Proposition 3.6. $|\Sigma(2,7,14m - 1)| = 3$ for any positive odd integer m.

Proof. The w-invariant of $\Sigma(2,7,13)$ is $w(2,7,13) = 2 > 0$ and hence by Proposition 3.5, we have
\[
|\Sigma(2,7,14m - 1)| \geq w(2,7,13) - 0 + 1 = 2 - 0 + 1 = 3.
\]
On the other hand, by Matsumoto’s estimate
\[
|\Sigma(2,7,14m - 1)| = |\Sigma(2,7,14 \cdot (2k - 1) - 1)| \leq \frac{(2 - 1)(7 - 1)}{2} = 3.
\]
Therefore $|\Sigma(2,7,14m - 1)| = 3$ for any odd m. \hfill \qed

The following two propositions are cases where we could not determine the bounding genera.

Proposition 3.7. $2 \leq |\Sigma(2,7,14m + 1)| \leq 3$ for any positive odd integer m.

Proof. The w-invariant of $\Sigma(2,7,15)$ is $w(2,7,15) = -2 < 0$ and hence by Proposition 3.5, we have $|\Sigma(2,7,14m + 1)| \geq -(2) - 1 + 1 = 2$. On the other hand, by Matsumoto’s estimate $|\Sigma(2,7,14m + 1)| \leq (2)(7 - 1)/2 = 3$. Hence the assertion follows. \hfill \qed

Proposition 3.8. $2 \leq |\Sigma(3,5,15m + 1)| \leq 4$, $3 \leq |\Sigma(3,5,15m - 1)| \leq 4$ for any positive odd integer m.

Proof. The w-invariant of $\Sigma(3,5,16)$ is calculated to be $w(3,5,16) = -2 < 0$ and hence by Proposition 3.5, $|\Sigma(3,5,15m + 1)| \geq -(2) - 1 + 1 = 2$ for m odd. On the other hand, the w-invariant of $\Sigma(3,5,14)$ is calculated to be $w(3,5,14) = 2 > 0$ and hence by Proposition 3.5, $|\Sigma(3,5,15m - 1)| \geq 3$ for m odd. Since Arf $(K(3,5)) = 0$, Proposition 3.8 can be applied to obtain $|\Sigma(3,5,15m + 1)| \leq (3 - 1)(5 - 1)/2 = 4$ for any m odd. \hfill \qed

The above estimate is sharpened by Matsumoto for small m’s.

Proposition 3.9 ([11 §4, Proposition 4.5]). Suppose that Arf $(K(p,q)) = 0$. Let m be an odd integer such that $0 < m \leq \lfloor p/2 \rfloor \lfloor q/2 \rfloor + 1$. Then $|\Sigma(p,q,pqm \pm 1)| \leq (p - 1)(q - 1)/2 - 1$.

This proposition enables us to determine the bounding genera in the following case.

Proposition 3.10. $|\Sigma(2,7,14m + 1)| = 2$ for $m = 1, 3$.

Proof. By Proposition 3.7 we have $|\Sigma(2, 7, 14m + 1)| \geq 2$ for any odd m. On the other hand, by Matsumoto’s estimates (Proposition 3.9), we have $|\Sigma(2, 7, 14m \pm 1)| \leq (2 - 1)(7 - 1)/2 - 1 = 2$ for $m = 1, 3$ and therefore $|\Sigma(2, 7, 14m + 1)| = 2$ for $m = 1, 3$.

The following is a case where we could not determine the bounding genera even if we use the sharpened estimate.

Proposition 3.11. $2 \leq |\Sigma(3, 5, 15m + 1)| \leq 3$ and $|\Sigma(3, 5, 15m - 1)| = 3$ for $m = 1, 3$.

Proof. By Proposition 3.8 we have $|\Sigma(3, 5, 15m + 1)| \geq 2$ and $|\Sigma(3, 5, 15m - 1)| \geq 3$. On the other hand, for m odd with $m \leq [3/2][5/2] + 1 = 3$, we have the inequality $|\Sigma(3, 5, 15m \pm 1)| \leq (3 - 1)(5 - 1)/2 - 1 = 3$ for $m = 1, 3$ by Matsumoto’s estimates (Proposition 3.9).

In the case where the w-invariant vanishes for Brieskorn homology 3-spheres $\Sigma(p, q, r)$ such as $\Sigma(2, 3, 12k - 1)$ for any integers k, we can apply the Fintushel-Stern invariant $R(p, q, r)$ [3]. The explicit formula of the invariant is given in terms of the trigonometric sums by using the Kawasaki V-index formula. W. Neumann and D. Zagier [14] derived the useful expression $R(\alpha_1, \ldots, \alpha_n) = 2b - 3$ by using the “b-invariant” of the Seifert fibration $\Sigma(\alpha_1, \ldots, \alpha_n)$ where b satisfies $b + \sum_{i=1}^{n} \beta_i/\alpha_i = 1/\prod_{i=1}^{n} \alpha_i$ and $0 < \beta_i < \alpha_i$ with $\beta_i\alpha_i \equiv -1 \pmod{\alpha_i}$. By using this expression we have the following:

Proposition 3.12. Let p, q, r be pairwise coprime positive integers. If $R(p, q, r) > 0$, then

$$|\Sigma(p, q, r + kpq)| \geq 1$$

for any non-negative integers k.

Proof. The b-invariants of $\Sigma(p, q, r)$ and $\Sigma(p, q, r + pq)$ coincide, and hence by the formula of W. Neumann and D. Zagier [14] we have $R(p, q, r) = R(p, q, r + pq)$. Therefore if $R(p, q, r) > 0$, then $R(p, q, r + kpq) > 0$, and by the theorem of R. Fintushel and R. Stern [3], $\Sigma(p, q, r + kpq)$ cannot be the boundary of an acyclic 4-manifold for any non-negative integer k.

As an application of Proposition 3.12 we have the following:

Proposition 3.13. $|\Sigma(2, 3, 12k - 1)| = 1$ for any non-negative integer k.

Proof. By Matsumoto’s estimate $|\Sigma(2, 3, 12k \pm 1)| \leq 1$ for any integer k. The w-invariant of $\Sigma(2, 3, 11)$ is $w(2, 3, 11) = 0$; hence we cannot apply Proposition 3.5. However, the Fintushel-Stern invariant $R(2, 3, 11) = 1 > 0$, and hence by Proposition 3.12 we have $|\Sigma(2, 3, 12k - 1)| \geq 1$ for any integer k, and the assertion follows. Note that in the case $\Sigma(2, 3, 12k + 1)$, the w-invariant of $\Sigma(2, 3, 13)$ is $w(2, 3, 13) = 0$ and the Fintushel-Stern invariant is $R(2, 3, 13) = -1 < 0$, and hence we cannot apply Proposition 3.5 nor Proposition 3.12. In fact, it is known that $\Sigma(2, 3, 13)$ [11, 14] and $\Sigma(2, 3, 25)$ [2] bound contractible smooth manifolds.

Matsumoto also gave estimates for the so-called Casson series of Brieskorn homology spheres.

Proposition 3.14 (Casson’s series [11, §5, Proposition 5.1]). Let p, q, r be odd integers satisfying $qr + rp + pq = -1$. Then $\|\Sigma(|p|, |q|, |r|)\| \leq 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
In fact, we have the following:

Proposition 3.15. Let p, q, r be odd integers satisfying $qr + rp + pq = -1$. Then $|\Sigma(p, q, r)| = 1$.

Proof. By the equality $qr + rp + pq = -1$, we see that the b-invariant of $\Sigma(p, q, r)$ is 2, and hence by the formula of W. Neumann and D. Zagier [14], we have $R(\Sigma(p, q, r)) = 2 \cdot 2 - 3 = 1 > 0$ and therefore $|\Sigma(p, q, r)| \geq 1$. Hence the assertion follows.

Example 3.16. $|\Sigma(2n + 1, 4n + 1, 4n + 3)| = 1$ for any positive integer n.

We have the following estimates of the bounding genera for Brieskorn homology 3-spheres in [11, §5, Proposition 5.5]. The upper bounds are given by Matsumoto.

Proposition 3.17 (cf. [11, §5, Proposition 5.5]).

| q | Brieskorn $\mathbb{Z}HS^4$ | $||\Sigma|| \leq$ | $w(\Sigma)$ | $R(\Sigma)$ | $|\Sigma|$ |
|-----|-----------------------------|-----------------|-----------------|-----------------|-----------------|
| 3 | $\Sigma(2, 3, 12k \pm 1)$ | ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 3, 12k \pm 5)$ | ± 1 | 0 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 5, 20k \pm 1)$ | ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 5, 20k \pm 3)$ | ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 5, 20k \pm 7)$ | ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 5, 20k \pm 9)$ | ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| 5 | $\Sigma(2, 7, 28k \pm 1)$ | ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 7, 28k \pm 5)$ | ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 7, 28k \pm 9)$ | ≤ 1 | 0 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 7, 28k \pm 11)$| ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 7, 28k \pm 13)$| ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| 7 | $\Sigma(2, 9, 36k \pm 1)$ | ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 9, 36k \pm 5)$ | ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 9, 36k \pm 7)$ | ≤ 1 | 0 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 9, 36k \pm 11)$| ± 1 | $1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| | $\Sigma(2, 9, 36k \pm 13)$| ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |
| 9 | $\Sigma(2, 9, 36k \pm 17)$| ≤ 1 | 0 | $-1(+)\pm 1$, $1(-)$ | $\geq 0(+)\pm 1$, $1(-)$ |

Remark 3.18 ([11, §5, Remark]). Matsumoto improved the estimates for several Brieskorn homology 3-spheres in the above lists. We give estimates below for them.

| q | Brieskorn $\mathbb{Z}HS^4$ | $||\Sigma|| \leq$ | $w(\Sigma)$ | $R(\Sigma)$ | $|\Sigma|$ |
|-----|-----------------------------|-----------------|-----------------|-----------------|-----------------|
| 3 | $\Sigma(2, 3, 12k + 1, k = 1, 2$ | 0, $k = 1, 2$ | 0 | -1 | $= 0$ |
| | $\Sigma(2, 3, 12k + 1, k = 1, 2$ | 0 | 0 | -1 | $= 0$ |
| 5 | $\Sigma(2, 5, 7)$ | 0 | 0 | -1 | $= 0$ |
| | $\Sigma(2, 5, 21)$ | 0 | 0 | -1 | $= 0$ |
| 7 | $\Sigma(2, 7, 28k - 13, k = 1, 2$ | $\leq 2, k = 1, 2$ | 2 | -1 | $= 2$ |
| | $\Sigma(2, 7, 13)$ | $\leq 3_{cr}$ | 2 | -1 | $= 3$ |
| | $\Sigma(2, 7, 15)$ | $\leq 2_{cr}$ | -2 | -1 | $= 2$ |
| | $\Sigma(2, 7, 19)$ | 0 | 0 | -1 | $= 0$ |
| 9 | $\Sigma(2, 9, 11)$ | $\leq 3_{cr}$ | -2 | -1 | $= 2$ |
| | $\Sigma(2, 9, 36k - 17, 1 \leq k \leq 3$ | $\leq 3, 1 \leq k \leq 3$ | -2 | -1 | $= 2$ |
Acknowledgement

The author would like to express his appreciation to the referee for the comments about a formula for the μ-invariant by W. Neumann which enabled us to improve our results of the bounding genera for several finite Brieskorn homology 3-spheres to much better results for infinite families of Brieskorn homology 3-spheres.

References

Department of Environmental and Information Studies, Tottori University of Environmental Studies, 1-1-1 Wakabadi-Kita, Tottori 689-1111, Japan
E-mail address: fukumoto@kankyo-u.ac.jp