Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Lusternik-Schnirelmann category of spaces with 2-dimensional fundamental group


Author: Alexander N. Dranishnikov
Journal: Proc. Amer. Math. Soc. 137 (2009), 1489-1497
MSC (2000): Primary 55M30
DOI: https://doi.org/10.1090/S0002-9939-08-09770-0
Published electronically: November 25, 2008
MathSciNet review: 2465675
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following inequality

$\displaystyle \mathrm{cat}_{\mathrm{LS}} X\le\mathrm{cat}_{\mathrm{LS}} Y+\bigg\lceil\frac{hd(X)-r}{r+1}\bigg\rceil$

holds for every locally trivial fibration $ f:X\to Y$ between $ ANE$ spaces which admits a section and has the $ r$-connected fiber, where $ hd(X)$ is the homotopical dimension of $ X$. We apply this inequality to prove that

$\displaystyle \mathrm{cat}_{\mathrm{LS}} X\le cd(\pi_1(X))+\bigg\lceil\frac{\dim X-1}{2}\bigg\rceil$

for every complex $ X$ with $ cd(\pi_1(X))\le 2$, where $ cd(\pi_1(X))$ denotes the cohomological dimension of the fundamental group of $ X$.


References [Enhancements On Off] (What's this?)

  • [CLOT] Cornea, O.; Lupton, G.; Oprea, J.; Tanré, D.: Lusternik-Schnirelmann category. Mathematical Surveys and Monographs, 103. American Mathematical Society, Providence, RI, 2003. MR 1990857 (2004e:55001)
  • [Cu] Cuvilliez, M.: LS-catégorie et $ k$-monomorphisme. Thèse, Université Catholique de Louvain, 1998.
  • [Do] Dold, A.: Partitions of unity in the theory of fibrations. Ann. of Math. (2) 78 (1963), 223-255. MR 0155330 (27:5264)
  • [DKR] Dranishnikov, A; Katz, M.; Rudyak, Y.: Small values of the Lusternik-Schnirelmann category for manifolds. Geometry and Topology 12 (2008), issue 3, 1711-1727. MR 2421138
  • [EG] Eilenberg, S.; Ganea, T.: On the Lusternik-Schnirelmann category of abstract groups. Ann. of Math. (2) 65 (1957), 517-518. MR 0085510 (19:52d)
  • [KR] Katz, M.; Rudyak, Y.: Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds. Communications on Pure and Applied Mathematics 59 (2006), 1433-1456. MR 2248895 (2007h:53055)
  • [OW] Oprea, J.; Walsh, J.: Quotient maps, group actions and Lusternik-Schnirelmann category, Topology Appl. 117 (2002), 285-305. MR 1874091 (2002i:55001)
  • [Os] Ostrand, Ph.: Dimension of metric spaces and Hilbert's problem $ 13$, Bull. Amer. Math. Soc. 71 (1965), 619-622. MR 0177391 (31:1654)
  • [Po] Postnikov, M.: Classification of the continuous mappings of an arbitrary $ n$-dimensional polyhedron into a connected topological space which is aspherical in dimensions greater than unity and less than $ n$. (Russian) Doklady Akad. Nauk SSSR (N.S.) 67 (1949), 427-430. MR 0033522 (11:451c)
  • [Sta] Stallings, J.: Groups of dimension 1 are locally free. Bull. Amer. Math. Soc. 74 (1968), 361-364. MR 0223439 (36:6487)
  • [St] Strom, J.: Lusternik-Schnirelmann category of spaces with free fundamental group. Algebr. Geom. Topol. 7 (2007), 1805-1808. MR 2366179 (2008k:55007)
  • [Sv] Švarc, A.: The genus of a fibered space. Trudy Moskov. Mat. Obšč. 10 (1961), 217-272; The genus of a fibre space. Trudy Moskov. Mat. Obšč. 11 (1962), 99-126; in Amer. Math. Soc. Transl. Series 2, vol. 55, 1966. MR 0154284 (27:4233), MR 0151982 (27:1963)
  • [Swan] Swan, R.: Groups of cohomological dimension one. J. Algebra 12 (1969), 585-610. MR 0240177 (39:1531)
  • [Th] Thomas, E.: Seminar on fiber spaces. Lecture Notes in Mathematics, 13, Springer-Verlag, Berlin, New York, 1966. MR 0203733 (34:3582)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55M30

Retrieve articles in all journals with MSC (2000): 55M30


Additional Information

Alexander N. Dranishnikov
Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32601-8105
Email: dranish@math.ufl.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09770-0
Received by editor(s): September 25, 2007
Received by editor(s) in revised form: April 27, 2008
Published electronically: November 25, 2008
Additional Notes: The author was supported by NSF grant DMS-0604494
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society