Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Irreducible representations of groupoid $ C^*$-algebras


Authors: Marius Ionescu and Dana P. Williams
Journal: Proc. Amer. Math. Soc. 137 (2009), 1323-1332
MSC (2000): Primary 46L55, 46L05; Secondary 22A22
DOI: https://doi.org/10.1090/S0002-9939-08-09782-7
Published electronically: December 4, 2008
MathSciNet review: 2465655
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is a second countable locally compact Hausdorff groupoid with Haar system, we show that every representation induced from an irreducible representation of a stability group is irreducible.


References [Enhancements On Off] (What's this?)

  • [1] Lisa Orloff Clark, CCR and GCR groupoid $ C^*$-algebras, Indiana Univ. Math. J. 56 (2007), no. 5, 2087-2110. MR 2359724
  • [2] Alain Connes, A survey of foliations and operator algebras, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982. MR 679730 (84m:58140)
  • [3] Valentin Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc. 347 (1995), 1779-1786. MR 95h:46104
  • [4] T. Fack and G. Skandalis, Sur les représentations et idéaux de la $ C\sp{\ast} $-algèbre d'un feuilletage, J. Operator Theory 8 (1982), no. 1, 95-129. MR 670180 (84d:46101)
  • [5] James Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885-911. MR 0146297 (26:3819)
  • [6] André Haefliger, Groupoïdes d'holonomie et classifiants, Astérisque (1984), no. 116, 70-97. Transversal structure of foliations (Toulouse, 1982). MR 755163 (86c:57026a)
  • [7] Alexander Kumjian, Paul S. Muhly, Jean N. Renault, and Dana P. Williams, The Brauer group of a locally compact groupoid, Amer. J. Math. 120 (1998), no. 5, 901-954. MR 2000b:46122
  • [8] E. Christopher Lance, Hilbert $ C^*$-modules: A toolkit for operator algebraists, London Math. Soc. Lecture Note Series, vol. 210, Cambridge Univ. Press, Cambridge, 1995. MR 1325694 (96k:46100)
  • [9] George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545. MR 0031489 (11,158b)
  • [10] Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $ C^*$-algebras, J. Operator Theory 17 (1987), no. 1, 3-22. MR 88h:46123
  • [11] Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Continuous-trace groupoid $ C^*$-algebras. III, Trans. Amer. Math. Soc. 348 (1996), 3621-3641. MR 1348867 (96m:46125)
  • [12] Paul S. Muhly and Dana P. Williams, Continuous trace groupoid $ C^*$-algebras, Math. Scand. 66 (1990), 231-241. MR 1075140 (91j:46081)
  • [13] Paul S. Muhly and Dana P. Williams, Continuous trace groupoid $ C^*$-algebras. II, Math. Scand. 70 (1992), 127-145. MR 1174207 (93i:46117)
  • [14] Paul S. Muhly and Dana P. Williams, Renault's equivalence theorem for groupoid crossed products, NYJM Monographs, vol. 3, State University of New York University at Albany, Albany, NY, 2008. Available at http://nyjm.albany.edu:8000/m/2008/3.htm.
  • [15] Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace $ C^*$-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 2000c:46108
  • [16] Jean Renault, A groupoid approach to $ C^*$-algebras, Lecture Notes in Mathematics, vol. 793, Springer-Verlag, Berlin, 1980. MR 0584266 (82h:46075)
  • [17] Jean Renault, Représentation des produits croisés d'algèbres de groupoïdes, J. Operator Theory 18 (1987), 67-97. MR 0912813 (89g:46108)
  • [18] Marc A. Rieffel, Induced representations of $ C^*$-algebras, Advances in Math. 13 (1974), 176-257. MR 50:5489
  • [19] Dana P. Williams, The topology on the primitive ideal space of transformation group $ C\sp{\ast} $-algebras and C.C.R. transformation group $ C\sp{\ast} $-algebras, Trans. Amer. Math. Soc. 266 (1981), no. 2, 335-359. MR 617538 (82h:46081)
  • [20] Dana P. Williams, Crossed products of $ C{\sp \ast}$-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR 2288954 (2007m:46003)
  • [21] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983), no. 3, 51-75. MR 739904 (85j:57043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L55, 46L05, 22A22

Retrieve articles in all journals with MSC (2000): 46L55, 46L05, 22A22


Additional Information

Marius Ionescu
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853-4201
Address at time of publication: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email: ionescu@math.uconn.edu

Dana P. Williams
Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755-3551
Email: dana.p.williams@Dartmouth.edu

DOI: https://doi.org/10.1090/S0002-9939-08-09782-7
Received by editor(s): October 19, 2007
Published electronically: December 4, 2008
Communicated by: Marius Junge
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society