Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Leonhard Euler and a $ q$-analogue of the logarithm


Authors: Erik Koelink and Walter Van Assche
Journal: Proc. Amer. Math. Soc. 137 (2009), 1663-1676
MSC (2000): Primary 33B30, 33E30
DOI: https://doi.org/10.1090/S0002-9939-08-09374-X
Published electronically: December 12, 2008
MathSciNet review: 2470825
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a $ q$-logarithm which was introduced by Euler and give some of its properties. This $ q$-logarithm has not received much attention in the recent literature. We derive basic properties, some of which were already given by Euler in a 1751 paper and in a 1734 letter to Daniel Bernoulli. The corresponding $ q$-analogue of the dilogarithm is introduced. The relation to the values at $ 1$ and $ 2$ of a $ q$-analogue of the zeta function is given. We briefly describe some other $ q$-logarithms that have appeared in the recent literature.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999. MR 1688958 (2000g:33001)
  • 2. R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954. MR 0068627 (16:914f)
  • 3. P. Borwein, On the irrationality of $ \sum \frac{1}{q^n+r}$, J. Number Theory 37 (1991), 253-259. MR 1096442 (92b:11046)
  • 4. P. Borwein, On the irrationality of certain series, Math. Proc. Cambridge Philos. Soc. 112 (1992), 141-146. MR 1162938 (93g:11074)
  • 5. K-S. Chung, W-S. Chung, S-T. Nam, H-J. Kang, New $ q$-derivative and $ q$-logarithm, Internat. J. Theor. Phys. 33 (1994), 2019-2029. MR 1306795 (95i:33018)
  • 6. A. Duval, Une remarque sur les ``logarithmes'' associés à certains caractères, Aequationes Math. 68 (2004), no. 1-2, 88-97. MR 2167011 (2006e:39029)
  • 7. P. Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 63-66. MR 0029405 (10:594c)
  • 8. L. Euler, Consideratio quarumdam serierum quae singularibus proprietatibus sunt praeditae, Novi Commentarii Academiae Scientiarum Petropolitanae 3 (1750-1751), pp. 10-12, 86-108; Opera Omnia, Ser. I, Vol. 14, B.G. Teubner, Leipzig, 1925, pp. 516-541.
  • 9. V.V. Fock, A.B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, arXiv:math/0702397v6, to appear in Invent. Math.
  • 10. G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd ed., Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, 2004. MR 2128719 (2006d:33028)
  • 11. W. Gautschi, On Euler's attempt to compute logarithms by interpolation: A commentary to his letter of February 17, 1734, to Daniel Bernoulli, J. Comput. Appl. Math. 219 (2008), no. 2, 408-415.
  • 12. A.B. Goncharov, The pentagon relation for the quantum dilogarithm and quantized $ M_{0,5}$, arXiv:0706.4054v2
  • 13. G. Kaniadakis, M. Lissia, Editorial, Physica A 340 (2004), xv-xix.
  • 14. A.N. Kirillov, Dilogarithm Identities, Progr. Theoret. Phys. Suppl. 118 (1995), 61-142 (Lectures in Math. Sci. 7, Univ. of Tokyo, 1995). MR 1356515 (96h:11102)
  • 15. K. Knopp, Theorie und Anwendung der Unendlichen Reihen, 4th ed., Springer-Verlag, Berlin-Heidelberg, 1947. MR 0028430 (10:446a)
  • 16. T.H. Koornwinder, Special functions and $ q$-commuting variables, pp. 131-166 in Special Functions, $ q$-Series and Related Topics (eds. M.E.H. Ismail, D.R. Masson and M. Rahman), Fields Inst. Commun. 14, Amer. Math. Soc., Providence, RI, 1997. MR 1448685 (99e:33024)
  • 17. C. Krattenthaler, T. Rivoal, W. Zudilin, Séries hypergéométriques basiques, $ q$-analogues des valeurs de la fonction zêta et séries d'Eisenstein, J. Inst. Math. Jussieu 5 (2006), 53-79. MR 2195945 (2006k:11137)
  • 18. L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958. MR 0105524 (21:4264)
  • 19. T. Matala-Aho, K. Väänänen, W. Zudilin, New irrationality measures for $ q$-logarithms, Math. Comp. 75 (2006), no. 254, 879-889. MR 2196997 (2007e:11082)
  • 20. C.A. Nelson, M.G. Gartley, On the two $ q$-analogue logarithmic functions: $ \ln\sb q(w)$, $ \ln\{e\sb q(z)\}$, J. Phys. A 29 (1996), no. 24, 8099-8115. MR 1446909 (98d:33007)
  • 21. G. Pólya, G. Szegő, Problems and Theorems in Analysis, Volume II, Springer-Verlag, New York-Heidelberg, 1976 (revised and enlarged translation of Aufgaben und Lehrsätze aus der Analysis II, 4th edition, 1971). MR 0465631 (57:5529)
  • 22. K. Postelmans, W. Van Assche, Irrationality of $ \zeta_q(1)$ and $ \zeta_q(2)$, J. Number Theory 126 (2007), 119-154. MR 2348015
  • 23. S.N.M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), no. 2, 1069-1146. MR 1434226 (98m:58065)
  • 24. J. Sauloy, Systèmes aux $ q$-différences singuliers réguliers: Classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 4, 1021-1071. MR 1799737 (2001m:39043)
  • 25. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479-487. MR 968597 (89i:82119)
  • 26. K. Ueno, M. Nishizawa, Quantum groups and zeta-functions, pp. 115-126 in Quantum Groups (eds. J. Lukierski, Z. Popowicz and J. Sobczyk), PWN, Warsaw, 1995. MR 1647965 (99k:11136)
  • 27. W. Van Assche, Little $ q$-Legendre polynomials and irrationality of certain Lambert series, The Ramanujan Journal 5 (2001), 295-310. MR 1876702 (2002k:11124)
  • 28. V.V. Zudilin, On the irrationality measure of the $ q$-analogue of $ \zeta(2)$, Mat. Sbornik 193 (2002), no. 8, 49-70 (in Russian); Sbornik Math. 193 (2002), no. 7-8, 1151-1172. MR 1934544 (2003g:11077)
  • 29. W. Zudilin, Approximations to $ q$-logarithms and $ q$-dilogarithms, with applications to $ q$-zeta values, Zap. Nauchn. Sem. POMI 322 (2005), 107-124 (in Russian); J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4673-4683. MR 2138454 (2006h:11088)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33B30, 33E30

Retrieve articles in all journals with MSC (2000): 33B30, 33E30


Additional Information

Erik Koelink
Affiliation: IMAPP, FNWI, Radboud Universiteit, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
Email: e.koelink@math.ru.nl

Walter Van Assche
Affiliation: Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
Email: walter@wis.kuleuven.be

DOI: https://doi.org/10.1090/S0002-9939-08-09374-X
Received by editor(s): March 6, 2007
Published electronically: December 12, 2008
Additional Notes: The second author was supported by research grant OT/04/21 of Katholieke Universiteit Leuven, research project G.0455.04 of FWO-Vlaanderen, and INTAS research network 03-51-6637
Dedicated: On the 300th anniversary of Euler’s birth
Communicated by: Peter A. Clarkson
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society