Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On an open problem regarding totally Fenchel unstable functions


Authors: Radu Ioan Bot and Ernö Robert Csetnek
Journal: Proc. Amer. Math. Soc. 137 (2009), 1801-1805
MSC (2000): Primary 90C25, 90C46; Secondary 42A50, 90C47, 46B20
DOI: https://doi.org/10.1090/S0002-9939-08-09738-4
Published electronically: November 19, 2008
MathSciNet review: 2470840
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an answer to Problem 11.5 posed in Stephen Simons's book From Hahn-Banach to Monotonicity.


References [Enhancements On Off] (What's this?)

  • 1. R. I. Boţ, G. Wanka, A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Anal. 64 (12) (2006), 2787-2804. MR 2218547 (2006k:49038)
  • 2. J. Bourgain, A geometric characterization of the Radon-Nikodým property in Banach spaces, Compos. Math. 36 (1) (1978), 3-6. MR 515034 (80h:46018)
  • 3. S. Dutta, T. S. S. R. K. Rao, On weak$ ^*$-extreme points in Banach spaces, J. Convex Anal. 10 (2) (2003), 531-539. MR 2044435 (2004m:46025)
  • 4. B. V. Godun, B.-L. Lin, S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (3) (1992), 673-675. MR 1070518 (92f:46014)
  • 5. R. E. Huff, P. D. Morris, Dual spaces with the Krein-Milman property have the Radon-Nikodým property, Proc. Amer. Math. Soc. 49 (1) (1975), 104-108. MR 0361775 (50:14220)
  • 6. K. Kunen, H. Rosenthal, Martingale proofs of some geometrical results in Banach space theory, Pacific J. Math. 100 (1) (1982), 153-175. MR 661446 (83k:46023)
  • 7. P. Morris, Disappearance of extreme points, Proc. Amer. Math. Soc. 88 (2) (1983), 244-246. MR 695251 (85b:46021)
  • 8. R. R. Phelps, Extreme points of polar convex sets, Proc. Amer. Math. Soc. 12 (2) (1961), 291-296. MR 0121634 (22:12368)
  • 9. S. Simons, Minimax and Monotonicity, Lecture Notes in Math., 1693, Springer-Verlag, Berlin, 1998. MR 1723737 (2001h:49002)
  • 10. S. Simons, From Hahn-Banach to Monotonicity, second edition, Lecture Notes in Math., 1693, Springer, New York, 2008. MR 2386931
  • 11. C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, 2002. MR 1921556 (2003k:49003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 90C25, 90C46, 42A50, 90C47, 46B20

Retrieve articles in all journals with MSC (2000): 90C25, 90C46, 42A50, 90C47, 46B20


Additional Information

Radu Ioan Bot
Affiliation: Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
Email: radu.bot@mathematik.tu-chemnitz.de

Ernö Robert Csetnek
Affiliation: Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
Email: robert.csetnek@mathematik.tu-chemnitz.de

DOI: https://doi.org/10.1090/S0002-9939-08-09738-4
Keywords: Conjugate function, Fenchel duality, minimax theorem, weak$^*$-extreme point
Received by editor(s): December 18, 2007
Received by editor(s) in revised form: July 21, 2008
Published electronically: November 19, 2008
Additional Notes: The first author was partially supported by DFG (German Research Foundation), project WA 922/1.
The second author was supported by a Graduate Fellowship of the Free State Saxony, Germany.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society