Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Average behavior of Fourier coefficients of cusp forms


Author: Guangshi Lü
Journal: Proc. Amer. Math. Soc. 137 (2009), 1961-1969
MSC (2000): Primary 11F30, 11F11, 11F66
Published electronically: December 30, 2008
MathSciNet review: 2480277
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ a_0(n)$ and $ b_0(n)$ be the normalized Fourier coefficients of the two holomorphic Hecke eigenforms $ f(z)\in S_{2k}(\Gamma)$ and $ \varphi(z)\in S_{2l}(\Gamma)$ respectively. In 1999, Fomenko studied the following average sums of $ a_0(n)$ and $ b_0(n)$:

$\displaystyle \sum_{n \leq x}a_0(n)^3, \quad \sum_{n \leq x}a_0(n)^2b_0(n), \quad \sum_{n \leq x}a_0(n)^2b_0(n)^2, \quad \sum_{n \leq x}a_0(n)^4.$      

In this paper, we are able to improve on Fomenko's results.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11F30, 11F11, 11F66

Retrieve articles in all journals with MSC (2000): 11F30, 11F11, 11F66


Additional Information

Guangshi Lü
Affiliation: Department of Mathematics, Shandong University, Jinan, Shandong, 250100, People’s Republic of China
Email: gslv@sdu.edu.cn

DOI: http://dx.doi.org/10.1090/S0002-9939-08-09741-4
PII: S 0002-9939(08)09741-4
Keywords: Fourier coefficients of cusp forms, Gelbart-Jacquet lift, $L$-function
Received by editor(s): May 30, 2008
Received by editor(s) in revised form: August 28, 2008
Published electronically: December 30, 2008
Additional Notes: This work was supported by the National Natural Science Foundation of China (Grant No. 10701048).
Communicated by: Ken Ono
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.