Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

When lower entropy implies stronger Devaney chaos


Authors: Grzegorz Haranczyk and Dominik Kwietniak
Journal: Proc. Amer. Math. Soc. 137 (2009), 2063-2073
MSC (2000): Primary 37B40, 37B20; Secondary 37E05, 37E10
DOI: https://doi.org/10.1090/S0002-9939-08-09756-6
Published electronically: December 15, 2008
MathSciNet review: 2480288
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the infimum of the topological entropy of continuous topologically exact interval (circle) maps is strictly smaller than the infimum of the topological entropy of continuous interval (circle) maps, which are topologically mixing, but not exact. Interpreting this result in terms of popular notions of chaos, one may say that on the interval (circle) lower entropy implies stronger Devaney chaos. Moreover, the infimum of the entropy of mixing circle maps is computed. These theorems may be considered as a completion of some results of Alsedà, Kolyada, Llibre, and Snoha (1999).


References [Enhancements On Off] (What's this?)

  • 1. Ll. Alsedà, S. Kolyada, J. Llibre, and L. Snoha, Entropy and periodic points for transitive maps, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1551-1573. MR 1451592 (99f:58117)
  • 2. Lluis Alsedà, Stewart Baldwin, Jaume Llibre, and Michał Misiurewicz, Entropy of transitive tree maps, Topology 36 (1997), no. 2, 519-532. MR 1415604 (98f:54031)
  • 3. Lluıs Alsedà, Jaume Llibre, and Michał Misiurewicz, Combinatorial dynamics and entropy in dimension one, second ed., World Scientific, River Edge, NJ, 2000. MR 1807264 (2001j:37073)
  • 4. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), no. 4, 332-334. MR 1157223 (93d:54059)
  • 5. Marcy Barge and Joe Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), no. 1, 355-365. MR 779069 (86h:58079)
  • 6. -, Dense periodicity on the interval, Proc. Amer. Math. Soc. 94 (1985), no. 4, 731-735. MR 792293 (87b:58068)
  • 7. -, Dense orbits on the interval, Michigan Math. J. 34 (1987), no. 1, 3-11. MR 873014 (88c:58031)
  • 8. A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 189-190. MR 650765 (83k:58053)
  • 9. Alexander M. Blokh, The ``spectral'' decomposition for one-dimensional maps, Dynamics Report. Expositions Dynam. Systems (N.S.) 4, Springer, Berlin, 1995, pp. 1-59. MR 1346496 (96e:58087)
  • 10. Ethan M. Coven and Irene Mulvey, Transitivity and the centre for maps of the circle, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 1-8. MR 837972 (87j:58074)
  • 11. Robert L. Devaney, An introduction to chaotic dynamical systems, Westview Press, Boulder, CO, 2003. MR 1979140 (2004e:37001)
  • 12. Sergiĭ Kolyada and L'ubomır Snoha, Some aspects of topological transitivity--a survey, Grazer Math. Ber., vol. 334, Karl-Franzens-Univ. Graz, Graz, 1997, pp. 3-35. MR 1644768
  • 13. Dominik Kwietniak and Michał Misiurewicz, Exact Devaney chaos and entropy, Qual. Theory Dyn. Syst. 6 (2005), no. 1, 169-179. MR 2273492 (2007i:37031)
  • 14. Sylvie Ruette, Chaos for continuous interval maps, preprint, available at http://www.math.u-psud.fr/~ruette/publications.html
  • 15. Benjamin Weiss, Topological transitivity and ergodic measures, Math. Systems Theory 5 (1971), 71-75. MR 0296928 (45:5987)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37B40, 37B20, 37E05, 37E10

Retrieve articles in all journals with MSC (2000): 37B40, 37B20, 37E05, 37E10


Additional Information

Grzegorz Haranczyk
Affiliation: Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
Email: gharanczyk@gmail.com

Dominik Kwietniak
Affiliation: Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland
Email: dominik.kwietniak@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-08-09756-6
Received by editor(s): August 18, 2008
Published electronically: December 15, 2008
Additional Notes: The second author was supported in part by the Ministry of Science and Education grant no. N 201 2723 33 for the years 2007–2009.
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society