Reduction theorems for Noether's problem
Authors:
Mingchang Kang and Bernat Plans
Journal:
Proc. Amer. Math. Soc. 137 (2009), 18671874
MSC (2000):
Primary 12F12, 12F20, 13A50, 11R32, 14E08
Published electronically:
January 6, 2009
MathSciNet review:
2480265
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be any field, and be a finite group. Let act on the rational function field by automorphisms and . Denote by the fixed field. Noether's problem asks whether is rational (= purely transcendental) over . We will give several reduction theorems for solving Noether's problem. For example, let be a direct product of finite groups. Theorem. Assume that is rational over . Then is rational over . In particular, if is rational (resp. retract rational) over , so is over .
 1.
Hamza
Ahmad, Mowaffaq
Hajja, and Mingchang
Kang, Rationality of some projective linear actions, J.
Algebra 228 (2000), no. 2, 643–658. MR 1764585
(2001e:12003), http://dx.doi.org/10.1006/jabr.2000.8292
 2.
Mowaffaq
Hajja, Rational invariants of metaabelian groups of linear
automorphisms, J. Algebra 80 (1983), no. 2,
295–305. MR
691805 (84g:20010), http://dx.doi.org/10.1016/00218693(83)900029
 3.
Mowaffaq
Hajja and Ming
Chang Kang, Some actions of symmetric groups, J. Algebra
177 (1995), no. 2, 511–535. MR 1355213
(96i:20013), http://dx.doi.org/10.1006/jabr.1995.1310
 4.
M. Kang, Actions of dihedral groups, in ``A festschrift in honor of Prof. ManKeung Siu, 2005'', Hong Kong University Press, to appear.
 5.
Hideo
Kuniyoshi, On a problem of Chevalley, Nagoya Math. J.
8 (1955), 65–67. MR 0069160
(16,993d)
 6.
Bernat
Plans, Noether’s problem for 𝐺𝐿(2,3),
Manuscripta Math. 124 (2007), no. 4, 481–487.
MR
2357794 (2008i:12009), http://dx.doi.org/10.1007/s0022900701400
 7.
Joseph
J. Rotman, An introduction to the theory of groups, 4th ed.,
Graduate Texts in Mathematics, vol. 148, SpringerVerlag, New York,
1995. MR
1307623 (95m:20001)
 8.
David
J. Saltman, Generic Galois extensions and problems in field
theory, Adv. in Math. 43 (1982), no. 3,
250–283. MR
648801 (84a:13007), http://dx.doi.org/10.1016/00018708(82)900366
 9.
David
J. Saltman, Retract rational fields and cyclic Galois
extensions, Israel J. Math. 47 (1984), no. 23,
165–215. MR
738167 (85j:13008), http://dx.doi.org/10.1007/BF02760515
 10.
Bhama
Srinivasan and Judith
D. Sally (eds.), Emmy Noether in Bryn Mawr, SpringerVerlag,
New York, 1983. MR 713788
(84g:01001)
 1.
 H. Ahmad, M. Hajja and M. Kang, Rationality of some projective linear actions, J. Algebra 228 (2000), 643658. MR 1764585 (2001e:12003)
 2.
 M. Hajja, Rational invariants of metaabelian groups of linear automorphisms, J. Algebra 80 (1983), 295305. MR 691805 (84g:20010)
 3.
 M. Hajja and M. Kang, Some actions of symmetric groups, J. Algebra 177 (1995), 511535. MR 1355213 (96i:20013)
 4.
 M. Kang, Actions of dihedral groups, in ``A festschrift in honor of Prof. ManKeung Siu, 2005'', Hong Kong University Press, to appear.
 5.
 H. Kuniyoshi, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 6567. MR 0069160 (16:993d)
 6.
 B. Plans, Noether's problem for , Manuscripta Math. 124 (2007), 481487. MR 2357794 (2008i:12009)
 7.
 J. J. Rotman, An introduction to the theory of groups, Graduate Texts in Math. 148, SpringerVerlag, New York, 1995 (fourth edition). MR 1307623 (95m:20001)
 8.
 D. J. Saltman, Generic Galois extensions and problems in field theory, Advances in Math. 43 (1982), 250283. MR 648801 (84a:13007)
 9.
 D. J. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math. 47 (1984), 165215. MR 738167 (85j:13008)
 10.
 R. G. Swan, Noether's problem in Galois theory, in ``Emmy Noether in Bryn Mawr'', edited by B. Srinivasan and J. Sally, SpringerVerlag, Berlin, 1983. MR 713788 (84g:01001)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
12F12,
12F20,
13A50,
11R32,
14E08
Retrieve articles in all journals
with MSC (2000):
12F12,
12F20,
13A50,
11R32,
14E08
Additional Information
Mingchang Kang
Affiliation:
Department of Mathematics and Taida Institute of Mathematical Sciences, National Taiwan University, Taipei, Taiwan
Email:
kang@math.ntu.edu.tw
Bernat Plans
Affiliation:
Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
Email:
bernat.plans@upc.edu
DOI:
http://dx.doi.org/10.1090/S0002993909096087
PII:
S 00029939(09)096087
Keywords:
Noether's problem,
rationality problem,
retract rational.
Received by editor(s):
August 29, 2007
Received by editor(s) in revised form:
March 7, 2008
Published electronically:
January 6, 2009
Additional Notes:
The secondnamed author was partially supported by MTM200604895 (Ministerio de Educación y Ciencia) and by 2005SGR00557 (Generalitat de Catalunya).
Communicated by:
Martin Lorenz
Article copyright:
© Copyright 2009 American Mathematical Society
