Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generic spectral simplicity of polygons


Authors: Luc Hillairet and Chris Judge
Journal: Proc. Amer. Math. Soc. 137 (2009), 2139-2145
MSC (2000): Primary 58J50
DOI: https://doi.org/10.1090/S0002-9939-09-09621-X
Published electronically: January 8, 2009
MathSciNet review: 2480296
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Laplace operator with Dirichlet or Neumann boundary conditions on polygons in the Euclidean plane. We prove that almost every simply connected polygon with at least four vertices has a simple spectrum. We also address the more general case of geodesic polygons in a constant curvature space form.


References [Enhancements On Off] (What's this?)

  • [A] Albert, J. H., Genericity of simple eigenvalues for elliptic PDE's. Proc. Amer. Math. Soc. 48 (1975), 413-418. MR 0385934 (52:6793)
  • [CH] Courant, R. and Hilbert, D., Methods of mathematical physics. I, John Wiley & Sons, Inc., New York, 1989. MR 0065391 (16:426a)
  • [K] Kato, T., Perturbation theory for linear operators. Springer-Verlag, Berlin, 1995. MR 1335452 (96a:47025)
  • [Srn] Sarnak, P., Spectra of hyperbolic surfaces. Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 441-478. MR 1997348 (2004f:11107)
  • [S] Semmes, S., Analysis on singular spaces, an appendix in Metric structures for Riemannian and non-Riemannian spaces by M. Gromov, Progress in Mathematics, vol. 152. Birkhäuser, Boston, 1999. MR 1699320 (2000d:53065)
  • [Thr] Thurston, W. P., Shapes of polyhedra and triangulations of the sphere. The Epstein birthday schrift, 511-549, Geom. Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998. MR 1668340 (2000b:57026)
  • [T] Thurston, W. P., Three-dimensional geometry and topology, Princeton Univ. Press, 1997. MR 1435975 (97m:57016)
  • [U] Uhlenbeck, K., Generic properties of eigenfunctions. Amer. J. Math. 98 (1976), no. 4, 1059-1078. MR 0464332 (57:4264)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J50

Retrieve articles in all journals with MSC (2000): 58J50


Additional Information

Luc Hillairet
Affiliation: Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629-Université de Nantes, 2 rue de la Houssinière, BP 92 208, F-44 322 Nantes Cedex 3, France
Email: Luc.Hillairet@math.univ-nantes.fr

Chris Judge
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47401
Email: cjudge@indiana.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09621-X
Received by editor(s): September 4, 2007
Received by editor(s) in revised form: April 22, 2008
Published electronically: January 8, 2009
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society