In orbifolds, small isoperimetric regions are small balls

Author:
Frank Morgan

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1997-2004

MSC (2000):
Primary 49Q20

DOI:
https://doi.org/10.1090/S0002-9939-09-09689-0

Published electronically:
January 21, 2009

MathSciNet review:
2480281

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a compact orbifold, for a small prescribed volume, an isoperimetric region is close to a small metric ball; in a Euclidean orbifold, it is a small metric ball.

**[A]**William K. Allard,*The first variation of a varifold*, Ann. of Math. (2)**95**(1972) 417-491. MR**0307015 (46:6136)****[Alm]**Frederick J. Almgren, Jr.,*Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints*, Memoirs Amer. Math. Soc. 4, No. 165, 1976. MR**0420406 (54:8420)****[Dr]**Olivier Druet,*Sharp local isoperimetric inequalities involving the scalar curvature*, Proc. Amer. Math. Soc.**130**(2002) 2351-2361. MR**1897460 (2003b:53036)****[F]**Herbert Federer,*The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension*, Bull. Amer. Math. Soc.**76**(1970) 767-771. MR**0260981 (41:5601)****[HHM]**Hugh Howards, Michael Hutchings, and Frank Morgan,*The isoperimetric problem on surfaces*, Amer. Math. Monthly**106**(1999) 430-439. MR**1699261 (2000i:52027)****[K]**B. Kleiner, cited by Per Tomter,*Constant mean curvature surfaces in the Heisenberg group*, Proc. Symp. Pure Math.**54**, Part 1, Amer. Math. Soc., Providence, RI, 1993, 485-495. MR**1216601 (94a:53098)****[M1]**Frank Morgan,*Geometric Measure Theory: A Beginner's Guide*, Academic Press, 4th ed., San Diego, CA, 2008. MR**1775760 (2001j:49001)****[M2]**Frank Morgan,*In polytopes, small balls about some vertex minimize perimeter*, J. Geom. Anal.**17**(2007) 97-106. MR**2302876 (2007k:49090)****[M3]**Frank Morgan,*Regularity of area-minimizing surfaces in D polytopes and of invariant surfaces in*, J. Geom. Anal.**15**(2005) 321-341. MR**2152485 (2006b:53008)****[M4]**Frank Morgan,*Regularity of isoperimetric hypersurfaces in Riemannian manifolds*, Trans. Amer. Math. Soc.**355**(2003) 5041-5052. MR**1997594 (2004j:49066)****[MJ]**Frank Morgan and David L. Johnson,*Some sharp isoperimetric theorems for Riemannian manifolds*, Indiana U. Math J.**49**(2000) 1017-1041. MR**1803220 (2002e:53043)****[MR]**Frank Morgan and Manuel Ritoré,*Isoperimetric regions in cones*, Trans. Amer. Math. Soc.**354**(2002) 2327-2339. MR**1885654 (2003a:53089)****[Ros]**Antonio Ros,*The isoperimetric problem, Global Theory of Minimal Surfaces*(Proc. Clay Research Institution Summer School, 2001, David Hoffman, editor), Amer. Math. Soc., Providence, RI, 2005. MR**2167260 (2006e:53023)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
49Q20

Retrieve articles in all journals with MSC (2000): 49Q20

Additional Information

**Frank Morgan**

Affiliation:
Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts 01267

Email:
Frank.Morgan@williams.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-09689-0

Keywords:
Isoperimetric,
perimeter minimizing,
orbifold

Received by editor(s):
March 19, 2008

Published electronically:
January 21, 2009

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.