In orbifolds, small isoperimetric regions are small balls

Author:
Frank Morgan

Journal:
Proc. Amer. Math. Soc. **137** (2009), 1997-2004

MSC (2000):
Primary 49Q20

Published electronically:
January 21, 2009

MathSciNet review:
2480281

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a compact orbifold, for a small prescribed volume, an isoperimetric region is close to a small metric ball; in a Euclidean orbifold, it is a small metric ball.

**[A]**William K. Allard,*On the first variation of a varifold*, Ann. of Math. (2)**95**(1972), 417–491. MR**0307015****[Alm]**F. J. Almgren Jr.,*Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints*, Mem. Amer. Math. Soc.**4**(1976), no. 165, viii+199. MR**0420406****[Dr]**Olivier Druet,*Sharp local isoperimetric inequalities involving the scalar curvature*, Proc. Amer. Math. Soc.**130**(2002), no. 8, 2351–2361 (electronic). MR**1897460**, 10.1090/S0002-9939-02-06355-4**[F]**Herbert Federer,*The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension*, Bull. Amer. Math. Soc.**76**(1970), 767–771. MR**0260981**, 10.1090/S0002-9904-1970-12542-3**[HHM]**Hugh Howards, Michael Hutchings, and Frank Morgan,*The isoperimetric problem on surfaces*, Amer. Math. Monthly**106**(1999), no. 5, 430–439. MR**1699261**, 10.2307/2589147**[K]**Per Tomter,*Constant mean curvature surfaces in the Heisenberg group*, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 485–495. MR**1216601**, 10.1090/pspum/054.1/1216601**[M1]**Frank Morgan,*Geometric measure theory*, 3rd ed., Academic Press, Inc., San Diego, CA, 2000. A beginner’s guide. MR**1775760****[M2]**Frank Morgan,*In polytopes, small balls about some vertex minimize perimeter*, J. Geom. Anal.**17**(2007), no. 1, 97–106. MR**2302876**, 10.1007/BF02922085**[M3]**Frank Morgan,*Regularity of area-minimizing surfaces in 3D polytopes and of invariant hypersurfaces in 𝐑ⁿ*, J. Geom. Anal.**15**(2005), no. 2, 321–341. MR**2152485**, 10.1007/BF02922198**[M4]**Frank Morgan,*Regularity of isoperimetric hypersurfaces in Riemannian manifolds*, Trans. Amer. Math. Soc.**355**(2003), no. 12, 5041–5052 (electronic). MR**1997594**, 10.1090/S0002-9947-03-03061-7**[MJ]**Frank Morgan and David L. Johnson,*Some sharp isoperimetric theorems for Riemannian manifolds*, Indiana Univ. Math. J.**49**(2000), no. 3, 1017–1041. MR**1803220**, 10.1512/iumj.2000.49.1929**[MR]**Frank Morgan and Manuel Ritoré,*Isoperimetric regions in cones*, Trans. Amer. Math. Soc.**354**(2002), no. 6, 2327–2339. MR**1885654**, 10.1090/S0002-9947-02-02983-5**[Ros]**Antonio Ros,*The isoperimetric problem*, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175–209. MR**2167260**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
49Q20

Retrieve articles in all journals with MSC (2000): 49Q20

Additional Information

**Frank Morgan**

Affiliation:
Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts 01267

Email:
Frank.Morgan@williams.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-09689-0

Keywords:
Isoperimetric,
perimeter minimizing,
orbifold

Received by editor(s):
March 19, 2008

Published electronically:
January 21, 2009

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.