Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Electrical response matrix of a regular $ 2n$-gon


Authors: Nathaniel D. Blair-Stahn and David B. Wilson
Journal: Proc. Amer. Math. Soc. 137 (2009), 2015-2025
MSC (2000): Primary 31A25; Secondary 30C20, 82B20, 05C05
DOI: https://doi.org/10.1090/S0002-9939-09-09734-2
Published electronically: January 21, 2009
MathSciNet review: 2480283
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a unit-resistive plate in the shape of a regular polygon with $ 2n$ sides, in which even-numbered sides are wired to electrodes and odd-numbered sides are insulated. The response matrix, or Dirichlet-to-Neumann map, allows one to compute the currents flowing through the electrodes when they are held at specified voltages. We show that the entries of the response matrix of the regular $ 2n$-gon are given by the differences of cotangents of evenly spaced angles, and we describe some connections with the limiting distributions of certain random spanning forests.


References [Enhancements On Off] (What's this?)

  • [Car92] John L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201-L206. MR 1151081 (92m:82048)
  • [CdV98] Yves Colin de Verdière, Spectres de graphes, Cours Spécialisés [Specialized Courses], vol. 4, Société Mathématique de France, Paris, 1998. MR 1652692 (99k:05108)
  • [CIM98] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), no. 1-3, 115-150. MR 1657214 (99k:05096)
  • [CS04] Gabriel D. Carroll and David Speyer, The cube recurrence, Electron. J. Combin. 11 (2004), no. 1, Research Paper 73, 31 pp. MR 2097339 (2005f:05007)
  • [Dub06] Julien Dubédat, Euler integrals for commuting SLEs, J. Stat. Phys. 123 (2006), no. 6, 1183-1218. MR 2253875 (2007g:82027)
  • [FK72] C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536-564. MR 0359655 (50:12107)
  • [Gam01] Theodore W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001. MR 1830078 (2002h:30001)
  • [GM05] John B. Garnett and Donald E. Marshall, Harmonic Measure, New Mathematical Monographs, vol. 2, Cambridge University Press, 2005. MR 2150803 (2006g:31002)
  • [IM98] David Ingerman and James A. Morrow, On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region, SIAM J. Math. Anal. 29 (1998), no. 1, 106-115 (electronic). MR 1617177 (99c:35258)
  • [Kir90] Gustav Kirchhoff, Beweis der Existenz des Potentials das an der Grenze des betrachteten Raumes gegebene Werthe hat für den Fall dass diese Grenze eine überall convexe Fläche ist, Acta Math. 14 (1890), no. 1, 179-183. MR 1554794
  • [KW06] Richard W. Kenyon and David B. Wilson, Boundary partitions in trees and dimers, 2006. To appear in Trans. Amer. Math. Soc. http://arxiv.org/abs/math.PR/0608422
  • [Smi01] Stanislav Smirnov, Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239-244. MR 1851632 (2002f:60193)
  • [Zif95] Robert M. Ziff, Proof of crossing formula for $ 2$D percolation, J. Phys. A 28 (1995), no. 22, 6479-6480. MR 1379947 (96m:82030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A25, 30C20, 82B20, 05C05

Retrieve articles in all journals with MSC (2000): 31A25, 30C20, 82B20, 05C05


Additional Information

Nathaniel D. Blair-Stahn
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195

David B. Wilson
Affiliation: Microsoft Research, One Microsoft Way, Redmond, Washington 98052

DOI: https://doi.org/10.1090/S0002-9939-09-09734-2
Received by editor(s): April 3, 2007
Received by editor(s) in revised form: May 1, 2008
Published electronically: January 21, 2009
Communicated by: Edward C. Waymire
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society