Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on Cheeger sets


Authors: Alessio Figalli, Francesco Maggi and Aldo Pratelli
Journal: Proc. Amer. Math. Soc. 137 (2009), 2057-2062
MSC (2000): Primary 39B62
DOI: https://doi.org/10.1090/S0002-9939-09-09795-0
Published electronically: January 26, 2009
MathSciNet review: 2480287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Starting from the quantitative isoperimetric inequality, we prove a sharp quantitative version of the Cheeger inequality.


References [Enhancements On Off] (What's this?)

  • 1. F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in $ \mathbb{R}^N$, Math. Ann., 332 (2005), no. 2, 329-366. MR 2178065 (2006g:35091)
  • 2. A. Alvino, V. Ferone and C. Nitsch, The quantitative isoperimetric inequality for convex domains in the plane, preprint.
  • 3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292 (2003a:49002)
  • 4. F. Bernstein, Über die isoperimetriche Eigenschaft des Kreises auf der Kugeloberflache und in der Ebene, Math. Ann., 60 (1905), 117-136. MR 1511289
  • 5. T. Bhattacharya, Some observations on the first eigenvalue of the $ p$-Laplacian and its connections with asymmetry, Electron. J. Differential Equations (2001), No. 35, 15 pp. MR 1836803 (2002e:35185)
  • 6. T. Bhattacharya and A. Weitsman, Bounds for capacities in terms of asymmetry, Rev. Mat. Iberoamericana, 12 (1996), no. 3, 593-639. MR 1435477 (99c:31004)
  • 7. T. Bonnesen, Über die isoperimetrische Defizit ebener Figuren, Math. Ann., 91 (1924), 252-268. MR 1512192
  • 8. H. Brezis and E.H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal., 62 (1985), no. 1, 73-86. MR 790771 (86i:46033)
  • 9. G. Buttazzo, G. Carlier and M. Comte, On the selection of maximal Cheeger sets, Differential and Integral Equations, 20 (2007), no. 9, 991-1004. MR 2349376 (2008i:49025)
  • 10. G. Carlier and M. Comte, On a weighted total variation minimization problem, J. Funct. Anal., 250 (2007), 214-226. MR 2345913
  • 11. V. Caselles, A. Chambolle and M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math., 232 (2007), no. 1, 77-90. MR 2358032 (2008j:49012)
  • 12. A. Cianchi, A quantitative Sobolev inequality in BV, J. Funct. Anal., 237 (2006), no. 2, 466-481. MR 2230346 (2007b:46053)
  • 13. A. Cianchi, Sharp Morrey-Sobolev inequalities and the distance from extremals, Trans. Amer. Math. Soc., 360 (2008), no. 8, 4335-4347. MR 2395175
  • 14. A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, The sharp Sobolev inequality in quantitative form, submitted paper. Available in preprint version on http://cvgmt.sns.it/. To appear in Journal of the European Mathematical Society.
  • 15. A. Cianchi, N. Fusco, F. Maggi and A. Pratelli, On the isoperimetric deficit in the Gauss space, submitted paper. Available in preprint version on http://cvgmt.sns.it/.
  • 16. L. Esposito, N. Fusco and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4 (2005), no. 4, 619-651. MR 2207737 (2006k:52013)
  • 17. A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted paper. Available in preprint version on http://cvgmt.sns.it/.
  • 18. L. E. Fraenkel, On the increase of capacity with asymmetry, Computational Methods and Function Theory, 8 (2008), no. 1, 203-224. MR 2419474
  • 19. P. Freitas and D. Krejčiřík, A sharp upper bound for the first Dirichlet eigenvalue and the growth of the isoperimetric constant of convex domains, Proc. Amer. Math. Soc., 136 (2008), no. 8, 2997-3006. MR 2399068
  • 20. B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in $ \mathbb{R}^n$, Trans. Amer. Math. Soc., 314 (1989), 619-638. MR 942426 (89m:52016)
  • 21. N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. 168 (2008).
  • 22. N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative Sobolev inequality for functions of bounded variation, J. Funct. Anal. 244 (2007), no. 1, 315-341. MR 2294486 (2008a:46033)
  • 23. N. Fusco, F. Maggi and A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities, to appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5).
  • 24. R.R. Hall, A quantitative isoperimetric in $ n$-dimensional space, J. Reine Angew. Math., 428 (1992), 161-176. MR 1166511 (93d:51041)
  • 25. R.R. Hall, W.K. Hayman and A.W. Weitsman, On asymmetry and capacity, J. d'Analyse Math., 56 (1991), 87-123. MR 1243100 (95h:31004)
  • 26. W. Hansen and N. Nadirashvili, Isoperimetric inequalities in potential theory. Proceedings from the International Conference on Potential Theory (Amersfoort, 1991). Potential Anal., 3 (1994), no. 1, 1-14. MR 1266215 (95c:31003)
  • 27. B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $ p$-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin., 44 (2003), no. 4, 659-667. MR 2062882 (2005g:35053)
  • 28. B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225 (2006), 103-118. MR 2233727 (2007e:52002)
  • 29. B. Kawohl and M. Novaga, The $ p$-Laplace eigenvalue problem as $ p\to 1$ and Cheeger sets in a Finsler metric, J. Convex Analysis, 15 (2008), 623-634. MR 2431415
  • 30. F. Maggi, Some methods for studying stability in isoperimetric type problems, Bull. Amer. Math. Soc., 45 (2008), 367-408. MR 2402947
  • 31. A. Melas, The stability of some eigenvalue estimates, J. Differential Geom., 36 (1992), no. 1, 19-33. MR 1168980 (93d:58178)
  • 32. R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly, 86 (1979), 1-29. MR 519520 (80h:52013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 39B62

Retrieve articles in all journals with MSC (2000): 39B62


Additional Information

Alessio Figalli
Affiliation: Université de Nice-Sophia Antipolis, Labo. J.-A. Dieudonné, UMR 6621, Parc Valrose, 06108 Nice Cedex 02, France
Address at time of publication: Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France
Email: figalli@math.polytechnique.fr

Francesco Maggi
Affiliation: Dipartimento di Matematica, Università degli Studi di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy
Email: maggi@math.unifi.it

Aldo Pratelli
Affiliation: Dipartimento di Matematica, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
Email: aldo.pratelli@unipv.it

DOI: https://doi.org/10.1090/S0002-9939-09-09795-0
Received by editor(s): July 29, 2008
Published electronically: January 26, 2009
Additional Notes: The work of the second and third authors was partially supported by the GNAMPA through the 2008 research project Disuguaglianze geometrico-funzionali in forma ottimale e quantitativa
Communicated by: Tatiana Toro
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society