Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Constructing big indecomposable modules


Authors: Andrew Crabbe and Janet Striuli
Journal: Proc. Amer. Math. Soc. 137 (2009), 2181-2189
MSC (2000): Primary 13H10, 13C14, 13E05
DOI: https://doi.org/10.1090/S0002-9939-09-09760-3
Published electronically: January 26, 2009
MathSciNet review: 2495250
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be local Noetherian ring of depth at least two. We prove that there are indecomposable $ R$-modules which are free on the punctured spectrum of constant, arbitrarily large, rank.


References [Enhancements On Off] (What's this?)

  • 1. Maurice Auslander, Finite type implies isolated singularity, Orders and their applications, Lecture Notes in Math., vol. 1142, Springer, Berlin, 1985. MR 812487
  • 2. Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
  • 3. R.-O. Buchweitz, G.-M. Greuel and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182. MR 0877011 (88d:14005)
  • 4. Andrew Crabbe, Daniel Katz, Janet Striuli, and Emanoil Theodorescu, Hilbert polynomials for the controvarient functor, preprint (2007).
  • 5. David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 97a:13001
  • 6. Anders J. Frankild, Sean Sather-Wagstaff, and Roger Wiegand, Ascent of module structures, vanishing of ext, and extended modules, Mich. J. Math., to appear.
  • 7. W. Hassler, R. Karr, L. Klingler, and R. Wiegand, Large indecomposable modules over local rings, J. Algebra 303 (2006), no. 1, 202-215. MR 2253659
  • 8. Wolfgang Hassler, Ryan Karr, Lee Klingler, and Roger Wiegand, Big indecomposable modules and direct-sum relations, Illinois J. Math. 51 (2007), no. 1, 99-122 (electronic). MR 2346189
  • 9. -, Indecomposable modules of large rank over Cohen-Macaulay local rings, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1391-1406 (electronic). MR 2357700
  • 10. Wolfgang Hassler and Roger Wiegand, Big indecomposable mixed modules over hypersurface singularities, Abelian groups, rings, modules, and homological algebra, Lect. Notes Pure Appl. Math., vol. 249, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 159-174. MR 2229110 (2007h:13018)
  • 11. Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York, 1980, reprint of the 1974 original. MR 600654
  • 12. Daniel Katz and Emanoil Theodorescu, On the degree of Hilbert polynomials associated to the torsion functor, Proc. Amer. Math. Soc. 135 (2007), 3073-3082. MR 2322736 (2008f:13021)
  • 13. Lee Klingler and Lawrence S. Levy, Representation type of commutative Noetherian rings. I. Local wildness, Pacific J. Math. 200 (2001), no. 2, 345-386. MR 1868696
  • 14. -, Representation type of commutative Noetherian rings. II. Local tameness, Pacific J. Math. 200 (2001), no. 2, 387-483. MR 1868697
  • 15. -, Representation type of commutative Noetherian rings. III. Global wildness and tameness, Mem. Amer. Math. Soc. 176 (2005), no. 832, viii+170. MR 2147090
  • 16. Vijay Kodiyalam, Homological invariants of powers of an ideal, Proc. Amer. Math. Soc. 118 (1993), no. 3, 757-764. MR 1156471
  • 17. Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1975 edition. MR 96d:18001
  • 18. Joseph J. Rotman, An introduction to homological algebra, Pure and Applied Mathematics, vol. 85, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979. MR 538169

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13H10, 13C14, 13E05

Retrieve articles in all journals with MSC (2000): 13H10, 13C14, 13E05


Additional Information

Andrew Crabbe
Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
Address at time of publication: Department of Mathematics, Syracuse University, Syracuse, New York 13210
Email: amcrabbe@syr.edu

Janet Striuli
Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
Address at time of publication: Department of Mathematics, Fairfield University, Fairfield, Connecticut 06824
Email: jstriuli@mail.fairfield.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09760-3
Keywords: Indecomposable modules, maximal Cohen-Macaulay modules, rank
Received by editor(s): May 8, 2008
Received by editor(s) in revised form: August 29, 2008
Published electronically: January 26, 2009
Additional Notes: The second author was partially supported by NSF grant DMS 0201904
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society