Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pointwise approximation by elementary complete contractions


Author: Bojan Magajna
Journal: Proc. Amer. Math. Soc. 137 (2009), 2375-2385
MSC (2000): Primary 46L06, 46L07; Secondary 47B47
DOI: https://doi.org/10.1090/S0002-9939-09-09781-0
Published electronically: January 29, 2009
MathSciNet review: 2495272
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complete contraction on a $ C^*$-algebra $ A$, which preserves all closed two sided ideals $ J$, can be approximated pointwise by elementary complete contractions if and only if the induced map on $ B\otimes A/J$ is contractive for every $ C^*$-algebra $ B$, ideal $ J$ in $ A$ and $ C^*$-tensor norm on $ B\otimes A/J$. A lifting obstruction for such an approximation is also obtained.


References [Enhancements On Off] (What's this?)

  • 1. P. Ara and M. Mathieu, Local multipliers of $ C^*$-algebras, Springer Monographs in Math., Springer-Verlag, London, 2003. MR 1940428 (2004b:46071)
  • 2. R. J. Archbold, D. W. B. Somerset and R. M. Timoney, On the central Haagerup tensor product and completely bounded mappings of a $ C^*$-algebra, J. Funct. Anal. 226 (2005), 406-428. MR 2160102 (2006d:46066)
  • 3. W. B. Arveson, Notes on extensions of $ C^*$-algebras, Duke Math. J. 44 (1977), 329-355. MR 0438137 (55:11056)
  • 4. D. P. Blecher and C. Le Merdy, Operator algebras and their modules--an operator space approach, London Math. Soc. Monographs, New Series, 30, Clarendon Press, Oxford, 2004. MR 2111973 (2006a:46070)
  • 5. N. P. Brown and N. Ozawa, $ C^*$-algebras and finite dimensional approximations, Graduate Studies in Math., 88, Amer. Math. Soc., Providence, RI, 2008. MR 2391387
  • 6. A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112 (1993), 97-120. MR 1207938 (94c:46120)
  • 7. K. Davidson, $ C^*$-algebras by example, Fields Institute Monographs 6, Amer. Math. Soc., Providence, RI, 1996. MR 1402012 (97i:46095)
  • 8. E. G. Effros and Z.-J. Ruan, Operator spaces, London Math. Soc. Monographs, New Series, 23, Oxford University Press, Oxford, 2000. MR 1793753 (2002a:46082)
  • 9. U. Haagerup, Injectivity and decomposition of completely bounded maps, Lecture Notes in Math. 1132, Springer-Verlag, Berlin, 1985, pp. 170-222. MR 799569 (87i:46133)
  • 10. M. Junge and C. Le Merdy, Factorization through matrix spaces for finite rank operators between $ C\sp *$-algebras, Duke Math. J. 100 (1999), 299-319. MR 1722956 (2000m:46121)
  • 11. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vols. 1, 2, Academic Press, London, 1983, 1986. MR 0719020 (85j:46099); MR 0859186 (88d:46106)
  • 12. B. Magajna, A transitivity theorem for algebras of elementary operators, Proc. Amer. Math. Soc. 118 (1993), 119-127. MR 1158004 (93f:46092)
  • 13. B. Magajna, A transitivity problem for completely bounded mappings, Houston J. Math. 23 (1997), 109-120. MR 1688839 (2000d:46073)
  • 14. B. Magajna, $ C^*$-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh 130A (2000), 375-387. MR 1750836 (2001g:46134)
  • 15. B. Magajna, Uniform approximation by elementary operators, http://www.fmf. uni-lj.si/~magajna/Publications/Uniform.pdf, to appear in Proc. Edinburgh Math. Soc.
  • 16. N. Ozawa, On the lifting property for universal $ C^*$-algebras of operator spaces, J. Operator Theory 46 (2001), 579-591. MR 1897155 (2003c:46073)
  • 17. V. I. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, Cambridge, 2002. MR 1976867 (2004c:46118)
  • 18. G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Series, 294, Cambridge Univ. Press, Cambridge, 2003. MR 2006539 (2004k:46097)
  • 19. R. R. Smith. Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175. MR 1138841 (93a:46115)
  • 20. D. W. B. Somerset, The central Haagerup tensor product of a $ C^*$-algebra, J. Operator Theory 39 (1998), 113-121. MR 1610306 (99e:46073)
  • 21. M. Takesaki, Theory of operator algebras. I, III, Springer-Verlag, New York, 1979, 2001. MR 548728 (81e:46038); MR 1943007 (2004g:46080)
  • 22. S. Wassermann, Exact $ C^*$-algebras and related topics, Lecture Notes Series 19, Seoul Nat. Univ., 1994. MR 1271145 (95b:46081)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L06, 46L07, 47B47

Retrieve articles in all journals with MSC (2000): 46L06, 46L07, 47B47


Additional Information

Bojan Magajna
Affiliation: Department of Mathematics, University of Ljubljana, Jadranska 21, Ljubljana 1000, Slovenia
Email: Bojan.Magajna@fmf.uni-lj.si

DOI: https://doi.org/10.1090/S0002-9939-09-09781-0
Keywords: $C^*$-algebra, $C^*$-tensor products, ideals, elementary operators, point norm topology
Received by editor(s): October 18, 2007
Received by editor(s) in revised form: September 27, 2008
Published electronically: January 29, 2009
Communicated by: Marius Junge
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society