Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Finiteness of Gorenstein injective dimension of modules


Authors: Leila Khatami, Massoud Tousi and Siamak Yassemi
Journal: Proc. Amer. Math. Soc. 137 (2009), 2201-2207
MSC (2000): Primary 13C11, 13D05, 13H10, 13D45
DOI: https://doi.org/10.1090/S0002-9939-09-09784-6
Published electronically: January 26, 2009
MathSciNet review: 2495252
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Chouinard formula for the injective dimension of a module over a noetherian ring is extended to Gorenstein injective dimension. Specifically, if $ M$ is a module of finite positive Gorenstein injective dimension over a commutative noetherian ring $ R$, then its Gorenstein injective dimension is the supremum of $ {depth} R_{\mathfrak{p}}- {width} _{R_\mathfrak{p}}M_{\mathfrak{p}}$, where $ \mathfrak{p}$ runs through all prime ideals of $ R$. It is also proved that if $ M$ is finitely generated and non-zero, then its Gorenstein injective dimension is equal to the depth of the base ring. This generalizes the classical Bass formula for injective dimension.


References [Enhancements On Off] (What's this?)

  • 1. M.  Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d'après des exposés de Maurice Auslander, Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. MR 0225844 (37:1435)
  • 2. M.  Auslander and M.  Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969). MR 0269685 (42:4580)
  • 3. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963) 8-28. MR 0153708 (27:3669)
  • 4. W.  Bruns and J.  Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. MR 1251956 (95h:13020)
  • 5. L. G. Chouinard II, On finite weak and injective dimension, Proc. Amer. Math. Soc. 60 (1976), 57-60. MR 0417158 (54:5217)
  • 6. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics 1747, Springer-Verlag, Berlin, 2000. MR 1799866 (2002e:13032)
  • 7. L. W. Christensen, H-B. Foxby and A. Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra 251 (2002) (1), 479-502. MR 1900297 (2003e:13022)
  • 8. L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and flat dimensions--A functorial description with applications, J. Algebra 302 (2006) (1), 231-279. MR 2236602 (2007h:13022)
  • 9. E. E. Enochs and O. M. G. Jenda, On Gorenstein injective modules, Comm. Algebra 21 (1993), 3489-3501. MR 1231612 (94g:13006)
  • 10. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and flat dimensions, Math. Japon. 44 (1996), 261-268. MR 1416263 (97k:13019)
  • 11. H. B. Foxby and A. J. Frankild, Cyclic modules of finite Gorenstein injective dimension and Gorenstein rings, Illinois J. Math. 51 (2007) (1), 67-82 (electronic). MR 2346187 (2008i:13022)
  • 12. M. Hellus, A note on the injective dimension of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), 2313-2321. MR 2390497
  • 13. L. Khatami and S. Yassemi, A Bass formula for Gorenstein injective dimension, Comm. Algebra 35 (2007) (6), 1882-1889. MR 2324620 (2008b:13019)
  • 14. A. Mafi, Some results on local cohomology modules, Arch. Math. 87 (2006), 211-216. MR 2258920 (2007i:13018)
  • 15. R. Takahashi, The existence of finitely generated modules of finite Gorenstein injective dimension, Proc. Amer. Math. Soc. 134 (2006) (11), 3115-3121 (electronic). MR 2231892 (2007d:13020)
  • 16. S. Yassemi, A generalization of a theorem of Bass, Comm. Alg. 35 (2007), 249-251. MR 2287566 (2007i:13013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C11, 13D05, 13H10, 13D45

Retrieve articles in all journals with MSC (2000): 13C11, 13D05, 13H10, 13D45


Additional Information

Leila Khatami
Affiliation: Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115
Email: l.khatami@neu.edu

Massoud Tousi
Affiliation: Department of Mathematics, Shahid Beheshti University, Tehran, Iran — and — School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Email: mtousi@ipm.ir

Siamak Yassemi
Affiliation: Department of Mathematics, University of Tehran, Tehran, Iran — and — School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
Email: yassemi@ipm.ir

DOI: https://doi.org/10.1090/S0002-9939-09-09784-6
Keywords: Cohen-Macaulay ring, Gorenstein injective dimension, Bass theorem
Received by editor(s): February 4, 2008
Received by editor(s) in revised form: September 9, 2008
Published electronically: January 26, 2009
Additional Notes: The second author was supported by a grant from the IPM, No. 870130214
The third author was supported by a grant from the IPM, No. 870130211
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society