Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Conformally stationary Lorentzian tori with no conjugate points are flat

Authors: Francisco J. Palomo and Alfonso Romero
Journal: Proc. Amer. Math. Soc. 137 (2009), 2403-2406
MSC (2000): Primary 53C50, 53C22, 53C25
Published electronically: February 24, 2009
MathSciNet review: 2495275
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Lorentzian torus which admits a timelike conformal vector field and with no conjugate points on its timelike and spacelike geodesics is proved to be flat. If only the absence of conjugate points on timelike geodesics is assumed, a counterexample is shown.

References [Enhancements On Off] (What's this?)

  • 1. J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry, Second edition, Pure and Applied Math., 202, Marcel Dekker, 1996. MR 1384756 (97f:53100)
  • 2. D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 4 (1994), 259-269. MR 1274115 (95h:53049)
  • 3. J.L. Flores and M. Sánchez, Geodesic connectedness and conjugate points in GRW space-times, J. Geom. Phys., 36 (2000), 285-314. MR 1793013 (2001g:58024)
  • 4. M. Gutiérrez, F.J. Palomo and A. Romero, A Berger-Green type inequality for compact Lorentzian manifolds, Trans. Amer. Math. Soc., 354 (2002), 4505-4523. (Erratum Trans. Amer. Math. Soc., 355 (2003), 5119-5120). MR 1926886 (2003h:53098), MR 1997597 (2004g:53076)
  • 5. M. Gutiérrez, F.J. Palomo and A. Romero, Lorentzian manifolds with no null conjugate points, Math. Proc. Camb. Phil. Soc., 137 (2004), 363-375. MR 2092065 (2005g:53124)
  • 6. E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 47-51. MR 0023591 (9:378d)
  • 7. A. Romero and M. Sánchez, On completeness of compact Lorentzian manifolds, Geometry and Topology of Submanifolds VI, World Scientific, 1994, 171-182. MR 1315099 (96c:53106)
  • 8. A. Romero and M. Sánchez, New properties and examples of incomplete Lorentzian tori, J. Math. Phys., 35 (1994), 1992-1997. MR 1267937 (95h:53093)
  • 9. A. Romero and M. Sánchez, Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Amer. Math. Soc., 123 (1995), 2831-2833. MR 1257122 (95k:53075)
  • 10. M. Sánchez, Structure of Lorentzian tori with a Killing vector field, Trans. Amer. Math. Soc., 349 (1997), 1063-1080. MR 1376554 (97f:53108)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C50, 53C22, 53C25

Retrieve articles in all journals with MSC (2000): 53C50, 53C22, 53C25

Additional Information

Francisco J. Palomo
Affiliation: Departamento de Matemática Aplicada, Complejo Tecnológico, Universidad de Málaga, 29071-Málaga, Spain

Alfonso Romero
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain

Keywords: Conformally stationary Lorentzian torus, conjugate points, flat Lorentzian torus.
Received by editor(s): June 13, 2008
Published electronically: February 24, 2009
Additional Notes: Both authors were partially supported by the Spanish MEC Grant MTM2007-60731 with FEDER funds and the Junta de Andalucía Regional Grant P06-FQM-01951.
Dedicated: Dedicated to Professor A. M. Naveira on his 68th birthday
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society