Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ K$-exact groups and coarsely embeddable groups


Author: Semail Ülgen Yildirim
Journal: Proc. Amer. Math. Soc. 137 (2009), 2393-2402
MSC (2000): Primary 46L80; Secondary 19K35, 46L06
DOI: https://doi.org/10.1090/S0002-9939-09-09870-0
Published electronically: February 17, 2009
MathSciNet review: 2495274
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce the notion of $ K$-exact $ C^{*}$-algebras, in particular $ K$-exact groups. We prove that $ K$-exactness is stable under direct limits and that coarsely embeddable groups are $ K$-exact groups under a technical condition.


References [Enhancements On Off] (What's this?)

  • 1. A. Connes, J. Cuntz, E. Guentner, N. Higson, J. Kaminker, J.E. Roberts, Noncommutative Geometry, Lecture Notes in Math., vol. 1831, Springer-Verlag, Berlin, 2004.MR 2067646 (2005b:00021)
  • 2. M. Rørdam, F. Larsen, N. J. Laustsen, An Introduction to $ K$-theory for $ C^{*}$-algebras, London Math. Soc. Student Texts, 49, Cambridge Univ. Press, Cambridge, 2000, 1-239. MR 1783408 (2001g:46001)
  • 3. N. Higson, J. Roe, Coarse Baum-Connes conjecture and groupoids, Topology, 41 (2002), 807-834.
  • 4. N. Higson, J. Roe, On the coarse Baum-Connes conjecture, Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 227-254. MR 1388312 (97f:58127)
  • 5. E. Guentner, N. Higson, S. Weinberger, The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci., 101 (2005), 243-268. MR 2217050 (2007c:19007)
  • 6. E. Kirchberg, S. Wassermann, Permanence properties of $ C^{*}$-exact groups, Doc. Math, 4 (1999), 513-558 (electronic). MR 1725812 (2001i:46089)
  • 7. E. Guentner, J. Kaminker, Exactness and uniform embeddability of discrete groups, J. Lond. Math. Soc., 70 (2004), 703-718. MR 2160829 (2006i:43006)
  • 8. E. Guentner, J. Kaminker, Exactness and the Novikov conjecture, Topology, 41 (2002), no. 2, 411-418. MR 1876896 (2003e:46097a)
  • 9. M. Dadarlat, E. Guentner, Constructions preserving Hilbert space uniform embeddability of discrete groups, Trans. Amer. Math. Soc., 355 (2003), 3253-3275. MR 1974686 (2004E:20070)
  • 10. J. L. Tu, La conjecture de Baum-Connes pour les feuilletages moyennables, $ K$-theory, 17 (1999), 215-264. MR 1703305 (2000g:19004)
  • 11. J. L. Tu, The Baum-Connes conjecture for groupoids, s, Springer, Berlin, 2000, 227-242. MR 1798599 (2001j:46109)
  • 12. S. Ülgen, $ K$-Exactness of Group $ C^{*}$-algebras, Ph.D. Thesis, Department of Mathematics, Purdue University, West Lafayette, IN, 2005.
  • 13. N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), no. 8, 691-695. MR 1763912 (2001g:22007)
  • 14. P. Nowak, Coarsely embeddable metric spaces without Property A, J. Funct. Anal., 252 (2007), 126-136. MR 2357352 (2008i:54026)
  • 15. J. Cuntz, $ {K}$-theoretic amenability for discrete groups, J. Reine Angew. Math., 344 (1983), 180-195. MR 716254 (86e:46064)
  • 16. G. Skandalis, Une notion de nucl$ \acute{e}$arit$ \acute{e}$ en $ K$-théorie (d'après J. Cuntz), $ {K}$-theory, 1 (1998), 549-573. MR 953916 (90b:46131)
  • 17. G. L. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139 (2000), 201-240. MR 1728880 (2000j:19005)
  • 18. M. L. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory (A. Niblo and M. Roller, eds.), London Math. Soc. Lecture Note Ser., 182, Cambridge University Press, Cambridge, 1993, 1-295, MR 1253544 (95m:20041)
  • 19. M. L. Gromov, Hyberbolic groups, in Essays in Group Theory, edited by S.M. Gersten, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. MR 919829 (89e:20070)
  • 20. E. Guentner, Exactness of the one relator groups, Proc. Amer. Math. Soc., 130 (2002), 1087-1093. MR 1873783 (2002m:46084)
  • 21. B. Blackadar, K-theory for Operator Algebras, Cambridge Univ. Press, Cambridge, 1998. MR 1656031 (99g:46104)
  • 22. P. A. Fillmore, A User's Guide to Operator Algebras, John Wiley and Sons, Inc., New York, 1996. MR 1385461 (97i:46094)
  • 23. S. Wassermann, Exact $ C\sp *$-algebras and Related Topics, Lecture Notes Series, 19, Global Analysis Research Center, Seoul National University, 1994. MR 1271145 (95b:46081)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L80, 19K35, 46L06

Retrieve articles in all journals with MSC (2000): 46L80, 19K35, 46L06


Additional Information

Semail Ülgen Yildirim
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Lunt Hall 223, Evanston, Illinois 60208-2370
Email: sulgen@math.northwestern.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09870-0
Received by editor(s): October 2, 2008
Published electronically: February 17, 2009
Communicated by: Marius Junge
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society