Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Concentration of $ 1$-Lipschitz maps into an infinite dimensional $ \ell^p$-ball with the $ \ell^q$-distance function


Author: Kei Funano
Journal: Proc. Amer. Math. Soc. 137 (2009), 2407-2417
MSC (2000): Primary 53C21, 53C23
Published electronically: March 12, 2009
MathSciNet review: 2495276
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the Lévy-Milman concentration phenomenon of $ 1$-Lipschitz maps into infinite dimensional metric spaces. Our main theorem asserts that the concentration to an infinite dimensional $ \ell^p$-ball with the $ \ell^q$-distance function for $ 1\leq p<q\leq +\infty$ is equivalent to the concentration to the real line.


References [Enhancements On Off] (What's this?)

  • 1. K. Funano, Asymptotics of mm-spaces, doctoral thesis, in preparation.
  • 2. K. Funano, Central and $ L^p$-concentration of $ 1$-Lipschitz maps into $ \mathbb{R}$-trees, to appear in J. Math. Soc. Japan.
  • 3. K. Funano, Concentration of maps and group action, preprint, available online at http://front.math.ucdavis.edu/0807.3210, 2008.
  • 4. Kei Funano, Observable concentration of mm-spaces into spaces with doubling measures, Geom. Dedicata 127 (2007), 49–56. MR 2338515, 10.1007/s10711-007-9156-6
  • 5. K. Funano, Observable concentration of mm-spaces into nonpositively curved manifolds, preprint, available online at http://front.math.ucdavis.edu/0701.5535, 2007.
  • 6. Thierry Giordano and Vladimir Pestov, Some extremely amenable groups, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 273–278 (English, with English and French summaries). MR 1891002, 10.1016/S1631-073X(02)02218-5
  • 7. Thierry Giordano and Vladimir Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6 (2007), no. 2, 279–315. MR 2311665, 10.1017/S1474748006000090
  • 8. Eli Glasner, On minimal actions of Polish groups, Topology Appl. 85 (1998), no. 1-3, 119–125. 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996). MR 1617456, 10.1016/S0166-8641(97)00143-0
  • 9. A. Gournay, Width of $ \ell^p$-balls, preprint, available online at http://front.math. ucdavis.edu/0711.3081, 2007.
  • 10. M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983), no. 4, 843–854. MR 708367, 10.2307/2374298
  • 11. M. Gromov, 𝐶𝐴𝑇(𝜅)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), no. Geom. i Topol. 7, 100–140, 299–300 (English, with Russian summary); English transl., J. Math. Sci. (N. Y.) 119 (2004), no. 2, 178–200. MR 1879258, 10.1023/B:JOTH.0000008756.15786.0f
  • 12. M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494, 10.1007/s000390300002
  • 13. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
  • 14. Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, 10.1023/A:1009841100168
  • 15. R. Latała and J. O. Wojtaszczyk, On the infimum convolution inequality, Studia Math. 189 (2008), no. 2, 147–187. MR 2449135, 10.4064/sm189-2-5
  • 16. Michel Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. MR 1849347
  • 17. V. D. Milman, A certain property of functions defined on infinite-dimensional manifolds, Dokl. Akad. Nauk SSSR 200 (1971), 781–784 (Russian). MR 0309150
  • 18. V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 28–37 (Russian). MR 0293374
  • 19. V. D. Milman, Asymptotic properties of functions of several variables that are defined on homogeneous spaces, Dokl. Akad. Nauk SSSR 199 (1971), 1247–1250 (Russian); English transl., Soviet Math. Dokl. 12 (1971), 1277–1281. MR 0303566
  • 20. V. D. Milman, Diameter of a minimal invariant subset of equivariant Lipschitz actions on compact subsets of 𝑅^{𝑘}, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 13–20. MR 907682, 10.1007/BFb0078133
  • 21. V. D. Milman, The heritage of P. Lévy in geometrical functional analysis, Astérisque 157-158 (1988), 273–301. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976223
  • 22. Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
  • 23. Assaf Naor, The surface measure and cone measure on the sphere of 𝑙_{𝑝}ⁿ, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1045–1079 (electronic). MR 2262841, 10.1090/S0002-9947-06-03939-0
  • 24. Vladimir Pestov, Dynamics of infinite-dimensional groups and Ramsey-type phenomena, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2005. 25^{𝑜} Colóquio Brasileiro de Matemática. [25th Brazilian Mathematics Colloquium]. MR 2164572
    Vladimir Pestov, Dynamics of infinite-dimensional groups, University Lecture Series, vol. 40, American Mathematical Society, Providence, RI, 2006. The Ramsey-Dvoretzky-Milman phenomenon; Revised edition of Dynamics of infinite-dimensional groups and Ramsey-type phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005; MR2164572]. MR 2277969
  • 25. Vladimir Pestov, Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. 127 (2002), 317–357. MR 1900705, 10.1007/BF02784537
    Vladimir Pestov, A corrigendum to: “Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups” [Israel J. Math. 127 (2002), 317–357; MR1900705], Israel J. Math. 145 (2005), 375–379. MR 2154737, 10.1007/BF02786701
  • 26. Vladimir Pestov, The isometry group of the Urysohn space as a Levy group, Topology Appl. 154 (2007), no. 10, 2173–2184. MR 2324929, 10.1016/j.topol.2006.02.010
  • 27. G. Schechtman and J. Zinn, Concentration on the 𝑙ⁿ_{𝑝} ball, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin, 2000, pp. 245–256. MR 1796723, 10.1007/BFb0107218
  • 28. Masaki Tsukamoto, Macroscopic dimension of the 𝑙^{𝑝}-ball with respect to the 𝑙^{𝑞}-norm, J. Math. Kyoto Univ. 48 (2008), no. 2, 445–454. MR 2436746

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C21, 53C23

Retrieve articles in all journals with MSC (2000): 53C21, 53C23


Additional Information

Kei Funano
Affiliation: Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
Email: sa4m23@math.tohoku.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-09-09873-6
Keywords: mm-space, infinite dimensional $\ell ^p$-ball, concentration of $1$-Lipschitz maps, L\'evy group
Received by editor(s): August 25, 2008
Published electronically: March 12, 2009
Additional Notes: This work was partially supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.
Communicated by: Mario Bonk
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.