A CLASS OF \mathbb{Z}^d SHIFTS OF FINITE TYPE WHICH FACTORS ONTO LOWER ENTROPY FULL SHIFTS

ANGELA DESAI

(Communicated by Jane M. Hawkins)

Abstract. We prove that if a \mathbb{Z}^d shift of finite type with entropy greater than $\log N$ satisfies the corner gluing mixing condition of Johnson and Madden, then it must factor onto the full N-shift.

1. Introduction

A basic question in symbolic dynamics is the question of when one shift space can factor onto another. There are well-known results addressing this question for \mathbb{Z} shifts of finite type (SFTs). In particular, any \mathbb{Z} SFT with entropy at least $\log N$ factors onto the full N-shift.

The situation is more complicated for $d > 1$. Often, we must impose further requirements, such as mixing conditions, to achieve similar results. Robinson and Sahin [RS] extended Krieger’s universal model results to $d > 1$ for SFTs with the uniform filling property. Lightwood [L1, L2] extended the Krieger Embedding Theorem [Kr] to \mathbb{Z}^d subshifts with $d > 1$ for a class of SFTs called square-filling-mixing.

Introducing a new mixing condition called corner gluing, Johnson and Madden [JM] proved that any \mathbb{Z}^d corner gluing SFT with entropy greater than $\log N$ has a finite extension which factors onto the full N-shift. They then posed the question of whether the extension is necessary. We prove that it is not.

Theorem 1.1. Let X be a corner gluing \mathbb{Z}^d SFT, and suppose $h(X) > \log N$. Then there exists a factor map $\varphi : X \to X_{[N]}$.

2. Definitions and notation

Let $A = \{0, 1, ..., N\}$, and let $X_{[N]} = A^{\mathbb{Z}^d}$, $d \in \mathbb{N}$. Give A the discrete topology, and then give $X_{[N]}$ the product topology. A point $x \in X_{[N]}$ can be viewed as an infinite d-dimensional array of symbols: for $w \in \mathbb{Z}^d$, let x_w be the symbol in location w.

For each $v \in \mathbb{Z}^d$, define a shift map $\sigma_v : x \mapsto y$ by $y_w = x_{v+w}$, and let σ be the \mathbb{Z}^d action $\{\sigma_v\}_{v \in \mathbb{Z}^d}$. The system $(X_{[N]}, \sigma)$ is the full \mathbb{Z}^d N-shift. For $R \subset \mathbb{Z}^d$, a configuration on R is some $\mathcal{M} \in A^R$. For $x \in X_{[N]}$, denote the configuration occurring at R by x_R.

Received by the editors March 28, 2007, and, in revised form, September 22, 2007.

2000 Mathematics Subject Classification. Primary 37B10; Secondary 37B40.

Key words and phrases. Shift of finite type, entropy.

@2009 American Mathematical Society
Reverts to public domain 28 years from publication.
If X is a closed, shift-invariant subset of $X_{[N]}$, then $(X, \sigma|_X)$ is called a \mathbb{Z}^d shift space, or subshift. Let A_X be the symbol set of X. A configuration $M \in A^R$ is allowed in X if there is some $x \in X$ such that $x_R = M$. Then we say that M occurs in x.

The most important subshifts are the shifts of finite type. A \mathbb{Z}^d subshift X is a shift of finite type (SFT) if it can be defined by forbidding a finite set of configurations $\mathcal{F} = \{F_1, F_2, \ldots, F_m\}$ occurring in $(A_X)^{\mathbb{Z}^d}$. X is a one-step shift of finite type if a point $x \in (A_X)^{\mathbb{Z}^d}$ is allowed in X whenever $x_{(m,n)}$ is not in \mathcal{F} for all $m, n \in \mathbb{Z}^d$ with $\|m - n\| = 1$, where $\| \cdot \|$ is the Euclidean norm on \mathbb{R}^d. Every SFT may be recoded to be a one-step shift of finite type. We will assume below that all shifts of finite type are one-step.

Let $c = (1, 1, \ldots, 1) \in \mathbb{Z}^d$. Let $\Lambda(n) = \{v = (v_1, \ldots, v_d) \in \mathbb{Z}^d : 0 \leq v_i < n\}$, the square of length n with lower left corner at the origin. Let $\overline{\Lambda}(2n-1) = \{v = (v_1, \ldots, v_d) \in \mathbb{Z}^d : -n < v_i < n\}$, the square of length $2n - 1$ centered at the origin. An n-block is a configuration on $\Lambda(n)$. Let $B_n(X)$ be the set of n-blocks allowed in X. Let $B(X) = \bigcup_n B_n(X)$.

If X and Y are subshifts, then a map $\phi : X \to Y$ is a block code if for $x \in X$, $\phi(x)_v$ depends on some finite block configuration occurring in x, centered at v for all $v \in \mathbb{Z}^d$. That is, if there is a map $\Phi : B_{2n-1}(X) \to A_Y$ such that $\phi(x)_v = \Phi(x_{\overline{\Lambda}(2n-1)+v})$ for all $v \in \mathbb{Z}^d$. The block codes from X to Y are exactly the continuous, shift-commuting maps. If ϕ is one-to-one, then it is called an embedding. If ϕ is onto, it is called a factor code, or a factor map. If ϕ is both one-to-one and onto, then it is a conjugacy. A subshift X is a sofic shift if there exists an SFT Y and a factor code $\pi : Y \to X$.

The topological entropy of a d-dimensional subshift X is defined to be

$$h(X) = \lim_{n \to \infty} \frac{1}{n^d} \log |B_n(X)|.$$

3. PROOF OF THEOREM

For $k = (k_1, k_2, \ldots, k_d) \in \mathbb{N}^d$, let $R_k = \{(a_1, a_2, \ldots, a_d) \in \mathbb{Z}^d : 0 \leq a_i < k_i \text{ for } 1 \leq i \leq d\}$.

Definition 3.1 (JM). A \mathbb{Z}^d SFT X is corner gluing if there exists a gluing constant $g > 0$ such that given any two finite subsets $E_1, E_2 \subset \mathbb{Z}^d$ as defined below and any two allowable configurations C_1 and C_2 on these subsets, there exists a point $x \in X$ with $x_{E_1} = C_1$ and $x_{E_2} = C_2$. Here $E_1 = R_k + (k' - k)$ for some $k \in \mathbb{N}^d$ and some $k' \in \mathbb{N}^d$ with $k' > k + gc$, and $E_2 = R_{k'} \setminus R_{k+gc}$ (see Figure 4 for the case where $d = 2$).

We can also think about this in terms of creating a larger rectangular configuration on $R_{k'}$ containing C_1 and C_2 and some uncontrolled gluing symbols between them. Then we say we are gluing C_1 to C_2. We refer to the configurations used to glue them together as gluing strips.

In the proof of Theorem 4.1 we will need to make use of the following result:

Theorem 3.2 (D). Let X be an SFT with $h(X) > 0$. Then there exists a family of SFT subsystems of X whose entropies are dense in $[0, h(X)]$.

We also need the following lemma, which constructs a marker square M that is aperiodic for low periods. For $R \subset \mathbb{Z}^d$ and $v \in \mathbb{Z}^d \setminus \{0\}$, a configuration C on R
Figure 1. Corner gluing

is said to be \(v \)-periodic if for every pair \(w, w + v \in R \) we have \(C_w = C_{w+v} \). For simplicity, throughout this section we will give arguments only for the case where \(d = 2 \). The proofs for \(d \neq 2 \) are similar.

Lemma 3.3. Let \(X \) be a corner gluing \(\mathbb{Z}^d \) SFT with \(h(X) > 0 \), and let \(g \) be the gluing constant. Then for \(f, c \in \mathbb{N} \), if \(F \in B_f(X) \), then there exists a square configuration \(M \in B(X) \) as in Figure 2 such that \(M \) is not \(v \)-periodic whenever \(\|v\|_\infty < c \).

Figure 2. Marker square \(M \)

Proof. First we will construct a rectangular configuration \(Q \) such that \(Q \) is not \(v \)-periodic whenever \(\|v\|_\infty < c \). Choose some \(Q_0 \in B_c(X) \). Consider the \(v \in \mathbb{Z}^2 \) such that \(\|v\|_\infty < c \) and \(Q_0 \) is \(v \)-periodic. Enumerate these as \(v_1, v_2, \ldots, v_p \).

Let \(i \geq 1 \). Assume that \(Q_{i-1} \in B_l(X) \), for some \(l \in \mathbb{N} \), is not \(v_j \)-periodic for \(j < i - 1 \) and occurs with lower left corner at the origin. Let \(v_i = (a, b) \). By symmetry, we may assume \(a \geq 0 \). The block \(Q_{i-1} \) will be the corner of the block \(Q_i \), as pictured in Figure 3 according to the following cases: (i) \(a, b > 0 \), (ii) \(a = 0, b > 0 \), (iii) \(a > 0, b = 0 \), and (iv) \(a > 0, b < 0 \).

Consider case (i). Choose \(k \in \mathbb{N} \) large enough that \(ka, kb > l + g \) and suppose \(\alpha \) is the symbol occurring at the lower left corner of \(Q_{i-1} \). Since \(h(X) > 0 \), there is some \(\beta \in A_X \) with \(\beta \neq \alpha \). Extend \(Q_{i-1} \) to an L-shape shown by the dashed lines in Figure 3(i), then glue the symbol \(\beta \) in at position \(k \overrightarrow{v_i} \). Extend the resulting rectangle to a square \(Q_i \). \(Q_i \) is not \(v_i \)-periodic because \(v_i \)-periodicity would imply \(\alpha = \beta \). As \(Q_i \) has \(Q_{i-1} \) as a subblock, it is not \(v_j \)-periodic for \(j < i - 1 \) either. For the remaining three cases the argument is the same (see Figure 3(ii),(iii),(iv)). The construction of \(Q_i \) is the same, based on the corresponding figures. End this process with \(Q = Q_p \). Then \(Q \) will not be \(v \)-periodic for \(\|v\|_\infty < c \).
Now construct the marker square M as follows. Extend F to an L-shaped configuration as in Figure 4(i). Then glue in Q as in Figure 4(ii), where the shaded region is the gluing region of width g necessary in the definition of corner gluing.

Extend this configuration to another L-shaped configuration, represented in Figure 5(i) with dashed lines. Choose some rectangle extension of F of the form seen in Figure 5(ii). Glue this rectangle to the L-shaped configuration to form a configuration as in Figure 5(iii).

Next, extend this rectangle to another L-shape as in Figure 6(i), and choose some rectangle as in Figure 6(ii) with an F at the right and left ends. Note that such a configuration is allowed because there is a point which contains it in Figure 6(i). Glue these configurations together to form the square in Figure 6(iii). Take M to be the subblock with an F at each corner.

With this lemma, we are ready to prove Theorem 1.1 using methods similar to those used by Johnson and Madden in [JM].

Proof of Theorem 1.1. By Theorem 3.2 there is a proper subsystem Y of finite type in X with $h(Y) > \log N$. Choose some square configuration $F \in B(X)$ that
is forbidden in Y, and call its side length f. Construct a square configuration M using F as in Lemma 3.3 for $c = 2(f + g)$. Denote the side length of M by m.

Figure 5. Construction of M, step 2

Figure 6. Construction of M, step 3
Given the marker square M and any rectangular configuration G allowed in Y of height m and arbitrary length, first extend M to an L-shaped configuration as in Figure 7(i). Then glue this configuration to G to get the new configuration seen in Figure 7(ii).

![Figure 7. Gluing M and G](image)

Continue this process to construct a configuration L of the form seen in Figure 8(i). The blocks labeled G can be filled in with any configuration of the appropriate size allowed in Y (we think of these as ‘good’ blocks), and the shaded regions are the necessary gluing strips (which may depend on the choice of G-blocks). By the inside corner of L, we mean the upper right corner of the block M in the lower left corner of L.

Glue a block of the type in Figure 8(ii) to L to get a legal block D of the type in Figure 8. The complement of L in D, will be called a follower of L. We do not control the symbols in the gluing strips, but all G-configurations of the correct size will appear in follower blocks for some choice of gluing strip configuration. Let l be the side length of the central block G in D, and $J = l + 2g + m$; then $C \in B_J(X)$. Each L has at least $|B_l(Y)|$ followers and because $h(Y) > \log N$, we have $|B_l(Y)| > N^{J^2}$ for large enough l. For each L, partition its followers into N^{J^2} nonempty sets, $P(L)_1, P(L)_2, \ldots, P(L)_{N^{J^2}}$, depending only on the follower’s central G-block.

Claim. Let $x \in X$. If blocks D and D' of the form in Figure 9 occur at different places in x, then their follower portions, C and C', do not overlap.

Proof of claim. Without loss of generality, assume D occurs with lower left corner at the origin, and D' occurs with lower left corner at v. Suppose C and C' do overlap. We know that v is not such that $\|v\|_\infty < c$, as that would contradict the lack of small periodicity of M assured by Lemma 3.3. But the lower left corner M of D' cannot overlap too much with any other M in D either, and we are assuming
that \(C \) and \(C' \) overlap. Therefore \(\|v\|_\infty \leq J - c \). Now since \(M \) was constructed with an \(F \) at each corner and \(c = 2(f + g) \), at least one subblock \(F \) of \(D' \) must occur entirely in a ‘good’ block \(G \) of \(D \). However these blocks were chosen from the blocks allowed in \(Y \) and so cannot contain \(F \) as a subblock. Thus \(C \) and \(C' \) cannot overlap. \(\square \)

Consider the \(J \)-blocks of \(X^\left\lfloor N \right\rfloor \). Enumerate them as \(E_1, E_2, \ldots, E_{NJ^2} \). Now we are ready to construct a factor map \(\varphi : X \to X^\left\lfloor N \right\rfloor \). We will define \(\varphi \) so that it essentially maps blocks from \(P(\mathcal{L})_i \) to \(E_i \) for each configuration \(\mathcal{L} \) and \(i = 1, 2, \ldots, NJ^2 \).

We make this precise as follows. For \(x \in X \), suppose a configuration \(D \) as in Figure 9 occurs in \(x_{\Lambda(2J-1)+v-Jc} \), the \((2J-1) \)-block centered at \(v \), and \(x_v \) is in the follower portion of \(D \). By the claim, \(x_v \) occurs in the follower portion of no other such block \(D' \). Therefore, there exist unique \(u, w \in \mathbb{Z}^2 \) such that \(v = u + w \), where \(\mathcal{L} \) has its inside corner at \(u \), and \(0 < w_i \leq J \) for \(i = 1, 2 \). If \(x_v \) occurs in \(\mathcal{C} \in P(\mathcal{L})_j \), then we define \(\varphi(x)_v \) to be the symbol from coordinate \(w \) of \(E_j \). If \(x_v \) is not in a follower, then \(\varphi(x)_v = 0 \).

Claim. \(\varphi \) is onto.

Proof of claim. Let \(E \in B_{kJ}(X^\left\lfloor N \right\rfloor) \) be as in Figure 10. Choose a configuration \(R \) of the form shown in Figure 11(i) whose height and width are both \(kJ + m + g \). We will glue configurations to \(R \) that will result in a square configuration which maps to \(E \). Consider the configuration \(\mathcal{L} \) in the lower left corner of \(R \).
If \(E(0,0) = E_i \), then choose a configuration \(B_{(0,0)} \in P(L_i) \) as in Figure 8(ii) to glue to \(L \). This new block \(B_{(0,0)} \) together with \(R \) forms two new \(L \)-configurations as shown in Figure 11(ii). One will be above \(B_{(0,0)} \) and one will be to the right of it. Glue in followers of each \(L \) from the partition elements corresponding to \(E(1,0) \) and \(E(0,1) \). Continuing in this manner, complete a block \(B \in B_{k,j}(X) \) that maps to \(E \) under the block map. \(\square \)

Johnson and Madden give the following example of a \(\mathbb{Z}^2 \) SFT \(X \), defined by the matrices below, that is corner gluing with \(h(X) > \log 2 \). Johnson and Madden’s theorem tells us only that \(X \) is the finite-to-one factor of an SFT that factors onto the full shift, and they ask whether \(X \) itself can factor onto \(X_{[2]} \). Theorem 1.1 tells us that it does.

\[
A_h = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \quad A_v = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}
\]

It is still not known whether every \(\mathbb{Z}^d \) SFT with \(h(X) > \log N \) factors onto the full \(N \)-shift.

REFERENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY, AND MATHEMATICS, UNIVERSITY OF MONTEVALLO, MONTEVALLO, ALABAMA 35115

Current address: Department of Mathematics, Anne Arundel Community College, 101 College Parkway, Arnold, Maryland 21012

E-mail address: avdesai@aacc.edu