Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Sur l'existence d'une solution ramifiée pour des équations de Fuchs à caractéristique simple


Author: Patrice Pongérard
Journal: Proc. Amer. Math. Soc. 137 (2009), 2671-2683
MSC (2000): Primary 35A07; Secondary 35A20
Published electronically: February 3, 2009
MathSciNet review: 2497480
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to construct a holomorphic solution, ramified around a simple characteristic hypersurface, for some linear Fuchsian equation of order $ m\geq 1$. We consider an operator $ L$, holomorphic in a neighborhood of the origin in $ {\mathbb{C}}_t\times{\mathbb{C}}_x^n$, of the form $ L=tA+B$ where $ A$ and $ B$ are linear partial differential operators of order $ m$ and $ m-1$, and where $ A$ has a simple characteristic hypersurface transverse to $ S:t=0$. Under an assumption linking the principal symbols of $ A$ and $ B$, the question is reduced to the study of an integro-differential Fuchsian equation with an additional variable $ z$ that describes the universal covering of a pointed disk. It is an equation where terms like $ t^lD_t^hD_x^\alpha(tD_t+1)^{-1}D_z^{-q}, l,h,q\in\mathbb{N}, \alpha\in\mathbb{N}^n$ with $ l\leq 1$ and $ h+\vert\alpha\vert\leq l+q$ appear. The problem is solved by the fixed-point theorem with appropriate estimations in a Banach space.


References [Enhancements On Off] (What's this?)

  • 1. M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973), 455–475. MR 0338532
  • 2. Setsuro Fujiié, Représentation hypergéométrique des singularités de la solution du problème de Cauchy caractéristique à données holomorphes, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1589–1629 (French). MR 1239925, 10.1080/03605309308820987
  • 3. Setsuro Fujiié, Solutions ramifiées des problèmes de Cauchy caractéristiques et fonctions hypergéométriques à deux variables, Tohoku Mathematical Publications, vol. 6, Tohoku University, Mathematical Institute, Sendai, 1997 (French). Dissertation, Tohoku University, Sendai, 1994. MR 1478161
  • 4. Y. Hamada, J. Leray, and C. Wagschal, Systèmes d’équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié; hyperbolicité partielle, J. Math. Pures Appl. (9) 55 (1976), no. 3, 297–352. MR 0435614
  • 5. Jean Leray, Problème de Cauchy. I. Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy, Bull. Soc. Math. France 85 (1957), 389–429 (French). MR 0103328
  • 6. A. Nabaji and C. Wagschal, Singularités à croissance lente, J. Math. Pures Appl. (9) 72 (1993), no. 4, 335–375 (French). MR 1228997
  • 7. Sunao Ōuchi, Singularities of solutions of equations with noninvolutive characteristics. I. The case of second order Fuchsian equations, J. Math. Soc. Japan 45 (1993), no. 2, 215–251. MR 1206651, 10.2969/jmsj/04520215
  • 8. P. Pongérard and C. Wagschal, Ramification non abélienne, J. Math. Pures Appl. (9) 77 (1998), no. 1, 51–88 (French, with English and French summaries). MR 1617590, 10.1016/S0021-7824(98)80065-2
  • 9. Patrice Pongérard, Sur une classe d’équations de Fuchs non linéaires, J. Math. Sci. Univ. Tokyo 7 (2000), no. 3, 423–448 (French, with English summary). MR 1792735
  • 10. Patrice Pongérand, Problème de Cauchy caractéristique à solution entière, J. Math. Sci. Univ. Tokyo 8 (2001), no. 1, 89–105 (French, with English summary). MR 1818907
  • 11. Patrice Pongérard, Ramification des solutions du problème de Cauchy fuchsien au voisinage de l’hypersurface initiale, J. Math. Sci. Univ. Tokyo 12 (2005), no. 4, 493–512 (French, with English summary). MR 2206356
  • 12. Jiichiroh Urabe, Meromorphic representations of the solutions of the singular Cauchy problem. II, J. Math. Kyoto Univ. 28 (1988), no. 2, 335–342. MR 953181
  • 13. Claude Wagschal, Sur le problème de Cauchy ramifié, J. Math. Pures Appl. (9) 53 (1974), 147–163 (French). MR 0382832
  • 14. Hideshi Yamane, Singularities in Fuchsian Cauchy problems with holomorphic data, Publ. Res. Inst. Math. Sci. 34 (1998), no. 2, 179–190. MR 1617067, 10.2977/prims/1195144760

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35A07, 35A20

Retrieve articles in all journals with MSC (2000): 35A07, 35A20


Additional Information

Patrice Pongérard
Affiliation: Université de La Réunion, 23 allée des rubis, 97400 Saint-Denis, La Réunion, France
Email: marc-patrice.pongerard@univ-reunion.fr

DOI: https://doi.org/10.1090/S0002-9939-09-09803-7
Received by editor(s): February 25, 2008
Received by editor(s) in revised form: October 16, 2008
Published electronically: February 3, 2009
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2009 American Mathematical Society