Inequalities between ranks and cranks
Authors:
Kathrin Bringmann and Karl Mahlburg
Journal:
Proc. Amer. Math. Soc. 137 (2009), 25672574
MSC (2000):
Primary 11P81; Secondary 05A17
Published electronically:
February 20, 2009
MathSciNet review:
2497467
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Higher moments of the partition rank and crank statistics have been studied for their connections to combinatorial objects such as Durfee symbols, as well as for their connections to harmonic Maass forms. This paper proves the first several cases of (and strengthens) a conjecture due to Garvan, which states that the moments of the crank function are always larger than the moments of the rank function. Furthermore, asymptotic estimates for these differences are also proven.
 1.
George
E. Andrews, The theory of partitions, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976
original. MR
1634067 (99c:11126)
 2.
G. E. Andrews, The number of smallest parts in the partitions of , to appear in J. Reine Angew. Math.
 3.
George
E. Andrews, Partitions, Durfee symbols, and the AtkinGarvan
moments of ranks, Invent. Math. 169 (2007),
no. 1, 37–73. MR 2308850
(2008d:05013), http://dx.doi.org/10.1007/s0022200700434
 4.
George
E. Andrews and F.
G. Garvan, Dyson’s crank of a
partition, Bull. Amer. Math. Soc. (N.S.)
18 (1988), no. 2,
167–171. MR
929094 (89b:11079), http://dx.doi.org/10.1090/S027309791988156376
 5.
George
E. Andrews, Richard
Askey, and Ranjan
Roy, Special functions, Encyclopedia of Mathematics and its
Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958
(2000g:33001)
 6.
A.
O. L. Atkin and F.
G. Garvan, Relations between the ranks and cranks of
partitions, Ramanujan J. 7 (2003), no. 13,
343–366. Rankin memorial issues. MR 2035811
(2005e:11131), http://dx.doi.org/10.1023/A:1026219901284
 7.
A.
O. L. Atkin and P.
SwinnertonDyer, Some properties of partitions, Proc. London
Math. Soc. (3) 4 (1954), 84–106. MR 0060535
(15,685d)
 8.
K. Bringmann, Aymptotics for rank partition functions, Transactions of the AMS, accepted for publication.
 9.
Kathrin
Bringmann, On the explicit construction of higher deformations of
partition statistics, Duke Math. J. 144 (2008),
no. 2, 195–233. MR 2437679
(2009e:11203), http://dx.doi.org/10.1215/001270942008035
 10.
K. Bringmann, F. Garvan and K. Mahlburg, Partition statistics and quasiweak Maass forms, Int. Math. Res. Not., 2009, no. 1, 6397.
 11.
K. Bringmann and K. Ono, Coefficients of harmonic weak Maass forms, preprint.
 12.
K. Bringmann and K. Ono, Dyson's ranks and Maass forms, to appear in Ann. of Math.
 13.
K. Bringmann and S. Zwegers, Rankcrank type PDE's and nonholomorphic Jacobi forms, to appear in Math. Res. Lett.
 14.
F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 1015.
 15.
Freeman
J. Dyson, Mappings and symmetries of partitions, J. Combin.
Theory Ser. A 51 (1989), no. 2, 169–180. MR 1001259
(90f:05009), http://dx.doi.org/10.1016/00973165(89)900435
 16.
Karl
Mahlburg, Partition congruences and the AndrewsGarvanDyson
crank, Proc. Natl. Acad. Sci. USA 102 (2005),
no. 43, 15373–15376 (electronic). MR 2188922
(2006k:11200), http://dx.doi.org/10.1073/pnas.0506702102
 17.
S. Ramanujan, Some properties of ; the number of partitions of , Proc. Camb. Phil. Soc. 19 (1919), 207210.
 18.
S.
Ramanujan, Congruence properties of partitions, Math. Z.
9 (1921), no. 12, 147–153. MR
1544457, http://dx.doi.org/10.1007/BF01378341
 1.
 G.E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1998. MR 1634067 (99c:11126)
 2.
 G. E. Andrews, The number of smallest parts in the partitions of , to appear in J. Reine Angew. Math.
 3.
 G. E. Andrews, Partitions, Durfee symbols, and the AtkinGarvan moments of ranks, Invent. Math. 169 (2007), 3773. MR 2308850 (2008d:05013)
 4.
 G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167171. MR 929094 (89b:11079)
 5.
 G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
 6.
 A. O. L. Atkin and F. G. Garvan, Relations between the ranks and the cranks of partitions, Ramanujan Journal 7 (2003), 343366. MR 2035811 (2005e:11131)
 7.
 A. O. L. Atkin and H. P. F. SwinnertonDyer, Some properties of partitions, Proc. London Math. Soc. 4 (1954), 84106. MR 0060535 (15:685d)
 8.
 K. Bringmann, Aymptotics for rank partition functions, Transactions of the AMS, accepted for publication.
 9.
 K. Bringmann, On the explicit construction of higher deformations of partition statistics, Duke Math. J. 144 (2008), 195233. MR 2437679
 10.
 K. Bringmann, F. Garvan and K. Mahlburg, Partition statistics and quasiweak Maass forms, Int. Math. Res. Not., 2009, no. 1, 6397.
 11.
 K. Bringmann and K. Ono, Coefficients of harmonic weak Maass forms, preprint.
 12.
 K. Bringmann and K. Ono, Dyson's ranks and Maass forms, to appear in Ann. of Math.
 13.
 K. Bringmann and S. Zwegers, Rankcrank type PDE's and nonholomorphic Jacobi forms, to appear in Math. Res. Lett.
 14.
 F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 1015.
 15.
 F. Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (1989), 169180. MR 1001259 (90f:05009)
 16.
 K. Mahlburg, Partition congruences and the AndrewsGarvanDyson crank, Proc. Natl. Acad. Sci. 102 (2005), no. 43, 1537315376. MR 2188922 (2006k:11200)
 17.
 S. Ramanujan, Some properties of ; the number of partitions of , Proc. Camb. Phil. Soc. 19 (1919), 207210.
 18.
 S. Ramanujan, Congruence properties of partitions, Math. Zeitschrift 9 (1921), 147153. MR 1544457
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11P81,
05A17
Retrieve articles in all journals
with MSC (2000):
11P81,
05A17
Additional Information
Kathrin Bringmann
Affiliation:
Mathematical Institute, University of Cologne, Weyertal 8690, 50931 Cologne, Germany
Email:
kbringma@math.unikoeln.de
Karl Mahlburg
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 021394307
Email:
mahlburg@math.mit.edu
DOI:
http://dx.doi.org/10.1090/S0002993909098062
PII:
S 00029939(09)098062
Received by editor(s):
October 9, 2008
Received by editor(s) in revised form:
October 20, 2008
Published electronically:
February 20, 2009
Additional Notes:
The first author was partially supported by NSF grant DMS0757907.
The second author was partially supported by NSA Grant 6917958.
Communicated by:
Ken Ono
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
