Twisted homogeneous coordinate rings of abelian surfaces via mirror symmetry

Author:
Marco Aldi

Journal:
Proc. Amer. Math. Soc. **137** (2009), 2741-2747

MSC (2000):
Primary 53D12; Secondary 14A22

DOI:
https://doi.org/10.1090/S0002-9939-09-09817-7

Published electronically:
February 11, 2009

MathSciNet review:
2497487

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study Seidel's mirror map for abelian and Kummer surfaces. We find that mirror symmetry leads in a very natural way to the classical parametrization of Kummer surfaces in . Moreover, we describe a family of embeddings of a given abelian surface into noncommutative projective spaces.

**1.**M. Abouzaid,*Homogeneous coordinate rings and mirror symmetry for toric varieties*, Geom. Topol. 10 (2006), 1097-1157 (electronic). MR**2240909 (2007h:14052)****2.**M. Aldi, E. Zaslow,*Seidel's mirror map for abelian varieties*, Adv. Theor. Math. Phys. 10 (2006), no. 4, 591-602. MR**2259690 (2007d:14074)****3.**M. Artin, J. Tate and M. Van den Bergh,*Some algebras associated to automorphisms of elliptic curves*, The Grothendieck Festschrift, vol. 1, Birkhäuser, Boston, 1990, 33-85. MR**1086882 (92e:14002)****4.**Ch. Birkenhake and H. Lange,*Complex Tori*, Progress in Mathematics 177, Birkhäuser, Boston, 1999. MR**1713785 (2001k:14085)****5.**I.V. Cherednik,*Some -matrices connected with abelian varieties*, Soviet Phys. Dokl. 24 (1979), no. 12, 974-976. MR**565088 (81d:14013)****6.**M.R. Gonzalez-Dorrego,*Configurations and geometry of Kummer surfaces in*, Memoirs of the AMS, vol. 107, no. 512 (1994). MR**1182682 (94f:14034)****7.**R. Hudson,*Kummer's Quartic Surface*, Cambridge Univ. Press, 1905.**8.**A. Kapustin, D. Orlov,*Lectures on mirror symmetry, derived categories, and D-branes.*Russian Math. Surveys 59 (2004), no. 5, 907-940. MR**2125928 (2006a:14068)****9.**M. Kontsevich,*Homological algebra of mirror symmetry*, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zurich, 1994). MR**1403918 (97f:32040)****10.**E.K. Sklyanin,*Some algebraic structures connected with the Yang-Baxter equation*, Functional Anal. Appl. 16 (1982), no. 4, 263-270. MR**684124 (84c:82004)****11.**S.P. Smith,*The -dimensional Sklyanin algebras*, Proceedings of the Conference on Algebraic Geometry and Ring Theory in Honor of Mike Artin, Part I (Antwerp, 1992), -theory 8 (1994), no. 1, 65-80. MR**1273836 (95i:16016)****12.**J. T. Stafford, M. Van den Bergh,*Noncommutative curves and noncommutative surfaces*, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 2, 171-216. MR**1816070 (2002d:16036)****13.**E. Zaslow,*Seidel's mirror map for the torus*, Adv. Theor. Math. Phys. 9 (2005), no. 6, 120-139. MR**2207572 (2006j:14055)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53D12,
14A22

Retrieve articles in all journals with MSC (2000): 53D12, 14A22

Additional Information

**Marco Aldi**

Affiliation:
Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, California 94720-3840

DOI:
https://doi.org/10.1090/S0002-9939-09-09817-7

Received by editor(s):
October 19, 2006

Received by editor(s) in revised form:
October 27, 2008

Published electronically:
February 11, 2009

Additional Notes:
This work was partially supported by NSF grant DMS-0072508

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.