THE ERD\H OŠ-KAC THEOREM FOR POLYNOMIALS
OF SEVERAL VARIABLES

MAOSHENG XIONG

(Communicated by Wen-Ching Winnie Li)

Abstract. We prove two versions of the Erd\H os-Kac type theorem for polynomials of several variables on some varieties arising from translation and affine linear transformation.

1. Introduction

For a positive integer \(n \), let \(\omega(n) \) be the number of distinct prime divisors of \(n \). The remarkable theorem of Erd\H os and Kac (\cite{7}) asserts that, for any \(\gamma \in \mathbb{R} \),

\[
\lim_{X \to \infty} \frac{1}{X} \# \left\{ 1 \leq n \leq X : \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \leq \gamma \right\} = G(\gamma),
\]

where

\[
G(\gamma) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\gamma} e^{-t^2/2} dt
\]

is the Gaussian distribution function.

Erd\H os and Kac proved this theorem by a probabilistic idea, building upon the work of Hardy and Ramanujan (\cite{10}) and Tur\H an (\cite{21}) on the normal order of \(\omega(n) \).

Since then there has been a very rich literature on various aspects of the Erd\H os-Kac theorem (see, for example, \cite{1, 9, 11, 13, 14, 15, 16, 17, 19, 20}). Interested readers can refer to Granville and Soundararajan’s paper \cite{8} for the most recent account and Elliot’s monograph \cite{6} for a comprehensive treatment of the subject.

In particular, Halberstam in \cite{9} proved that

\[
\lim_{X \to \infty} \frac{1}{X} \# \left\{ n : 1 \leq n \leq X, \frac{\omega(g(n)) - A(n)}{\sqrt{B(n)}} \leq \gamma \right\} = G(\gamma),
\]

where \(g(x) \in \mathbb{Z}[x] \) is an irreducible polynomial,

\[
A(n) = \sum_{p \leq n} \frac{r(p)}{p}, \quad B(n) = \sum_{p \leq n} \frac{r(p)^2}{p},
\]

and \(r(p) \) is the number of solutions of \(g(m) \equiv 0 \pmod{p} \), \(0 \leq m < p \).

In a recent paper (\cite{3}) Bourgain, Gamburd and Sarnak showed among other things that a large family of polynomials is “factor finite”; that is, the subset at which the polynomial has a bounded number of prime factors is Zariski dense in the orbit obtained by translation and affine linear transformation. By adapting their
proofs and applying a criterion of Liu ([15]), in this paper we obtain two versions of the Erdős-Kac type theorem for polynomials of several variables.

To state the first result, we need some notation.

For an additive subgroup $\Lambda \subset \mathbb{Z}^n$ of rank k ($1 \leq k \leq n$), explicitly given by $\Lambda = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_k$ for \mathbb{Q}-linearly independent vectors $e_1, \ldots, e_k \in \mathbb{Z}^n$, we denote by $V = Zcl(\Lambda)$ the Zariski closure of Λ in the affine space Λ^n over \mathbb{Q}. For any $b \in \mathbb{Z}^n$, denote $O_b = \Lambda + b$ and for any $L > 0$, denote

$$O_b(L) = \{ y_1e_1 + \cdots + y_ke_k + b \in O_b : |y_i| \leq L, \ y_i \in \mathbb{Z}, \ 1 \leq i \leq k \}.$$

Theorem 1. Let Λ be as above. Suppose each of the polynomials $f_1, \ldots, f_t \in \mathbb{Z}[x_1, \ldots, x_n]$ generates a distinct prime ideal in the coordinate ring $\mathbb{Q}[V]$. Let $f = f_1 \cdots f_t$. Then for any $b \in \mathbb{Z}^n$ and for any $\gamma \in \mathbb{R}$, we have

$$\lim_{L \to \infty} \frac{1}{\#O_b(L)} \# \left\{ x \in O_b(L) : \frac{\omega(f(x)) - t \log \log L}{\sqrt{t \log \log L}} \leq \gamma \right\} = G(\gamma).$$

When $k = n = 1$, Theorem 1 coincides with ([11]) in the special case that $g(x) \in \mathbb{Z}[x]$ is absolutely irreducible. As another example we may choose $\Lambda = \mathbb{Z}^2$ and $f_i(x, y) = x^i - y$ for $1 \leq i \leq t$. One sees that this choice of Λ and f_i's satisfies all the above conditions.

To state the second result, we use the following notation.

Let $\Lambda \subset \text{GL}(n, \mathbb{Z})$ be a free subgroup generated by the d elements A_1, \ldots, A_d. Suppose the Zariski closure $G = Zcl(\Lambda)$ is isomorphic to SL_2 over \mathbb{Q}. Given a matrix $b \in \text{Mat}_{m \times n}(\mathbb{Z})$, Λ acts on b by right multiplication. Suppose $\text{Stab}_\Lambda(b)$ is trivial and the G orbit $V = b \cdot G$ is Zariski closed and hence defines a variety over \mathbb{Q}. Assume $\text{dim} \ V > 0$. Denote $O_b = b \cdot \Lambda$. We turn O_b into a $2d$-regular tree by joining the vertex $x \in O_b$ with the vertices $x \cdot A_1, x \cdot A_1^{-1}, \ldots, x \cdot A_d, x \cdot A^{-1}_d$. (This is indeed a tree because Λ is free on the generators and $\text{Stab}_\Lambda(b)$ is trivial.) For $x, y \in O_b$, let $v(x, y)$ denote the distance in the tree from x to y. For any $L > 0$, we denote

$$O_b(L) = \{ x \in O_b : v(x, b) \leq \log L \}.$$

Theorem 2. Let Λ, b be as above. Suppose each of the polynomials $f_1, \ldots, f_t \in \mathbb{Z}[x_1, \ldots, x_{mn}]$ generates a distinct prime ideal in the coordinate ring $\mathbb{Q}[V]$, and let $f = f_1 \cdots f_t$. Then for any $\gamma \in \mathbb{R}$, we have

$$\lim_{L \to \infty} \frac{1}{\#O_b(L)} \# \left\{ x \in O_b(L) : \frac{\omega(f(x)) - t \log \log L}{\sqrt{t \log \log L}} \leq \gamma \right\} = G(\gamma).$$

As an example we may choose b to be the 2×2 identity matrix, $f_i(x_1, x_2, x_3, x_4) = x_1^i - x_4$ for each $1 \leq i \leq t$ and the subgroup $\Lambda \subset \text{SL}(2, \mathbb{Z})$ to be generated by two elements:

$$\Lambda = \left\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \right\rangle.$$

Since Λ is a non-elementary subgroup of $\text{SL}(2, \mathbb{Z})$ and $\Lambda \subset \Gamma(2)$, it is known that $Zcl(\Lambda) = \text{SL}_2$ and Λ is a free group ([2]). One can check that the f_i's generate distinct prime ideals in $\mathbb{Q}[V]$ and Λ, and the f_i's and b satisfy the conditions of Theorem 2.

This paper is organized as follows. Liu’s criterion is briefly reviewed in Section 2. In Section 3, we use it to prove Theorem 1 by adapting the sieving process of the proof of Theorem 1.6 in [3]. Since the proof of Theorem 2 is similar, it is sketched in Section 4.
2. Preliminaries

We shall need the following criterion obtained by Liu ([15]). For completeness and for later applications we reproduce the statement with some adjustments.

Let \(\mathcal{O} \) be an infinite set. For any \(L > 1 \), assign a finite subset \(\mathcal{O}(L) \subset \mathcal{O} \) such that \(\# \mathcal{O}(L) \to \infty \) as \(L \to \infty \) and \(\# \mathcal{O}(L^{1/2}) = o(\# \mathcal{O}(L)) \). Let \(f : \mathcal{O} \to \mathbb{Z} \setminus \{0\} \) be a map. Put \(X = X(L) = \# \mathcal{O}(L) \) and write, for each prime \(l \),

\[
\frac{1}{X} \# \{ n \in \mathcal{O}(L) : f(n) \text{ is divisible by } l \} = \lambda_l(X) + e_l(X)
\]

as a sum of the major term \(\lambda_l(X) \) and the error term \(e_l(X) \). For any \(u \) distinct primes \(l_1, l_2, \ldots, l_u \), we write

\[
\frac{1}{X} \# \{ n \in \mathcal{O}(L) : f(n) \text{ is divisible by } l_1l_2 \cdots l_u \} = \prod_{i=1}^{u} \lambda_{l_i}(X) + e_{l_1l_2 \cdots l_u}(X).
\]

To ease our notation, the dependence on \(X \) will be dropped when there is no ambiguity.

In order to gain information on the distribution of \(\omega(f(n)) \), some control on \(\lambda_l \) and \(e_l \) is needed. Liu’s criterion uses the conditions below.

Suppose there exist absolute constants \(\beta, c \), where \(0 < \beta \leq 1 \) and \(c > 0 \), and a function \(Y = Y(X) \leq X^\beta \) such that the following hold:

(i) For each \(n \in \mathcal{O}(L) \), the number of distinct prime divisors \(l \) of \(f(n) \) with \(l > X^\beta \) is bounded uniformly.

(ii) \(\sum_{Y < t \leq X^\beta} \lambda_t = o((\log \log X)^{1/2}) \).

(iii) \(\sum_{Y < t \leq X^\beta} |e_t| = o((\log \log X)^{1/2}) \).

(iv) \(\sum_{t \leq Y} \lambda_t = c \log \log X + o((\log \log X)^{1/2}) \).

(v) \(\sum_{t \leq Y} \lambda_t^2 = o((\log \log X)^{1/2}) \).

The sums in (ii)–(v) are over primes \(l \) in the given range.

(vi) For any \(r \in \mathbb{N} \) and any integer \(u \) with \(1 \leq u \leq r \), we have

\[
\lim_{X \to \infty} \frac{1}{(\log \log X)^{r/2}} \sum_{l_1 \cdots l_u} |e_{l_1 \cdots l_u}| = 0,
\]

where for each \(u \), the sum \(\sum'' \) extends over all \(u \) distinct primes \(l_1, l_2, \ldots, l_u \) with \(l_i \leq Y \).

Theorem 3 (Liu [15, Theorem 3]). If \(\mathcal{O} \) and \(f : \mathcal{O} \to \mathbb{Z} \setminus \{0\} \) satisfy all the above conditions, then for \(\gamma \in \mathbb{R} \), we have

\[
\lim_{L \to \infty} \frac{1}{X(L)} \# \left\{ n \in \mathcal{O}(L) : \frac{\omega(f(n)) - c \log \log X(L)}{\sqrt{c \log \log X(L)}} \leq \gamma \right\} = G(\gamma).
\]

While the conditions of Theorem 3 may appear complicated, in our applications, the terms \(\lambda_l \) and \(e_l \) can be easily identified and the conditions easily verified, as we shall see in the proofs of Theorems 1 and 2 below.

3. Proof of Theorem [1]

We denote the basis \(e_i, 1 \leq i \leq k, \) of \(\Lambda \) by \(e_i = (a_{i1}, \ldots, a_{in}) \in \mathbb{Z}^n \). Put

\[
A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kn} \end{pmatrix},
\]
which is a matrix of rank k. For a row vector y, let $|y|$ be the maximum modulus of its components. Then for L large, denote
\[\mathcal{O}_b(L) = \{ yA + b : y \in \mathbb{Z}^k, |y| \leq L \}. \]
We write X for $\# \mathcal{O}_b(L) = (2|L| + 1)^k$. To apply Theorem 3 one needs to estimate, for each square-free integer d, the sum
\[
\sum_{\substack{x \in \mathcal{O}_b(L) \in f(x) \equiv 0 \pmod{d} \leq L}} 1 = \sum_{\substack{y \in \mathbb{Z}^k \in f(yA + b) \equiv 0 \pmod{d} \leq L}} 1 = \sum_{\substack{y \in (\mathbb{Z}/d\mathbb{Z})^k \in f(yA + b) \equiv 0 \pmod{d} \leq L}} 1.
\]
Suppose $d \leq L$. The inner sum can be estimated as
\[
\frac{(2|L| + 1)^k}{d^k} + O \left(\frac{(2|L| + 1)^{k-1}}{d^{k-1}} \right) = X + O \left(\frac{X^{1-\frac{1}{k}}}{d^{k-1}} \right).
\]
Since the affine variety $V' = V + b$ is absolutely irreducible, and the polynomials f_1, \ldots, f_t generate distinct prime ideals in the coordinate ring $\mathbb{Q}[V]$, one sees that all the varieties
\[W_i = V' \cap \{ f_i = 0 \}, \quad i = 1, 2, \ldots, t, \]
are defined over \mathbb{Q}, absolutely irreducible, and of dimension equal to $\dim V' - 1 = k + 1 \geq 0$. Consider the reduction of the varieties V', W_i (mod p). According to Noether’s theorem [18], for p outside a finite set S_1 of primes, the reductions of V' and W_i, $i = 1, \ldots, t$, yield absolutely irreducible affine varieties over $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Denote by $V'(\mathbb{F}_p), V'(\mathbb{Z}/d\mathbb{Z})$, etc., the reduction of the varieties in the corresponding ring. By the Lang-Weil Theorem [12] we have that for $p \not\in S_1$,
\[
\# V'(\mathbb{Z}/p\mathbb{Z}) = p^k + O \left(p^{k-\frac{1}{2}} \right),
\]
\[
\# W_i(\mathbb{Z}/p\mathbb{Z}) = p^{k-1} + O \left(p^{k-\frac{1}{2}} \right).
\]
Since the map
\[
\mathbb{A}_d^k \rightarrow V', \quad y \mapsto yA + b
\]
is a bijection, one obtains
\[
\sum_{\substack{y \in (\mathbb{Z}/d\mathbb{Z})^k \in f(yA + b) \equiv 0 \pmod{d} \leq L}} 1 = \sum_{\substack{y \in V'(\mathbb{Z}/d\mathbb{Z}) \in f(y) \equiv 0 \pmod{d} \leq L}} 1 = \# W(\mathbb{Z}/d\mathbb{Z}),
\]
where
\[
W(\mathbb{Z}/d\mathbb{Z}) = \{ y \in V'(\mathbb{Z}/d\mathbb{Z}) : f(y) \equiv 0 \pmod{d} \}.
\]
Let
\[
\lambda_d = \frac{\# W(\mathbb{Z}/d\mathbb{Z})}{d^k}.
\]
By the Chinese Remainder Theorem, λ_d is multiplicative for d coprime to $\prod_{p \in S_1} p$.
Since
\[
W(\mathbb{Z}/d\mathbb{Z}) = \bigcup_{i=1}^t W_i(\mathbb{Z}/d\mathbb{Z}),
\]

for such square-free d one has
\[
\# W(\mathbb{Z}/d \mathbb{Z}) \leq \sum_{i=1}^{t} \# W_i(\mathbb{Z}/d \mathbb{Z}) = \sum_{i=1}^{t} \prod_{p \mid d} \# W_i(\mathbb{Z}/p \mathbb{Z}) = \sum_{i=1}^{t} \prod_{p \mid d} \left(p^{k-1} + O(p^{k-3/2}) \right) \ll d^{k-1+\epsilon}.
\]

Therefore for $d \leq L$ and $\gcd \left(d, \prod_{p \in S_1} p \right) = 1$, we obtain
\[
(3.1) \quad \sum_{f(x) \equiv 0 \pmod{d}} 1 = X(\lambda_d + e_d), \text{ where } e_d \ll d^k X^{-\frac{1}{2}}.
\]

It follows from Lemma 3.1 below that the estimate (3.1) still holds if on the left-hand side the points $x \in \mathcal{O}_L(L)$ such that $f(x) = 0$ are removed. Thus we may assume that $f(x) \neq 0$ for all $x \in \mathcal{O}_L(L)$. Now we return to λ_d. For $d = l$ a prime and $l \not\in S_1$ we have
\[
W(\mathbb{Z}/l \mathbb{Z}) = \bigcup_{i=1}^{t} W_i(\mathbb{Z}/l \mathbb{Z}).
\]

For fixed $i \neq j$, the algebraic subset $W_i = W_i(\mathbb{Z}/l \mathbb{Z}) \cap W_j(\mathbb{Z}/l \mathbb{Z})$ is defined over the finite field $\mathbb{F}_l = \mathbb{Z}/l \mathbb{Z}$ and has dimension at most $k - 2$. Then it follows from Lemma 2.1 of [4] that
\[
\# (W_i(\mathbb{Z}/l \mathbb{Z}) \cap W_j(\mathbb{Z}/l \mathbb{Z})) \ll l^{k-2},
\]

where the implied constant depends on f and V only. By the inclusion-exclusion principle,
\[
\sum_{i=1}^{t} \# W_i(\mathbb{Z}/l \mathbb{Z}) - \sum_{1 \leq i < j \leq t} \# (W_i(\mathbb{Z}/l \mathbb{Z}) \cap W_j(\mathbb{Z}/l \mathbb{Z})) \leq \# W(\mathbb{Z}/l \mathbb{Z}) \leq \sum_{i=1}^{t} \# W_i(\mathbb{Z}/l \mathbb{Z}),
\]

from which one obtains
\[
\# W(\mathbb{Z}/l \mathbb{Z}) = tl^{k-1} + O \left(l^{k-\frac{3}{2}} \right).
\]

This implies that
\[
(3.2) \quad \lambda_l = \frac{t}{l} + O \left(l^{-\frac{3}{2}} \right).
\]

Using (3.1) and (3.2) and choosing
\[
Y' = \exp \left(\frac{\log X}{\log \log X} \right), \quad \beta = \frac{1}{2k},
\]

one can verify the conditions (i)–(vi) of Theorem 3.3 for f and \mathcal{O}_L. For example, for (i), noticing that $f \in \mathbb{Z}[x_1, \ldots, x_n]$ and $x \in \mathcal{O}_L(L)$, one has $f(x) \ll L^{\deg f} \ll X^{\frac{\deg f}{2k}}$. Thus $\sum_{l \mid f(x)} 1 \ll X^{\beta}$; i.e., the number of distinct prime divisors l of $f(x)$ with $l > X^{\beta}$.
is bounded uniformly. For (ii), noticing \(\log \log Y = \log \log X - \log \log \log X \), one has
\[
\sum_{Y < t \leq X^a} \lambda_t \leq \sum_{Y < t \leq X^a} \frac{t}{\rho} + O \left(t^{\frac{-2}{3}} \right) \ll t \log \log X^a - t \log \log Y + O(1),
\]
which is \(o((\log \log X)^{1/2}) \) as \(X \) goes to infinity. The conditions (iii)–(v) can be verified similarly.

Finally, for (vi), for any fixed \(r \in \mathbb{N} \) and \(1 \leq u \leq r \),
\[
\sum_{l_i \leq Y} |\epsilon_{l_1 \cdots l_u}| \leq \epsilon \sum_{l_i \leq Y} X^{-\frac{2}{3}}(l_1 \cdots l_u)^r \ll X^{-\frac{2}{3}}Y^{r(1+\epsilon)} \ll X^{-\frac{2}{3}}(\log X)^{2r},
\]
which is \(o((\log \log X)^{-r/2}) \) as \(X \) goes to infinity.

Since the conditions (i)–(vi) of Theorem 3 are satisfied for \(f \) and \(O_{\mathbb{R}} \), the desired conclusion follows from Theorem 3. The proof of Theorem 1 will be completed once we prove Lemma 3.1 below.

Lemma 3.1. Let \(W \) be a proper closed subset of \(V' = V + \mathbb{A} \) defined over \(\mathbb{Q} \). Then as \(L \to \infty \) one has
\[
\#(O_{\mathbb{R}}(L) \cap W) \ll X^{1 - \frac{1}{k}}.
\]

Proof. The proof is very similar to that of Proposition 3.2 in [3]. For the sake of completeness we give a detailed proof here.

Since \(V' = V + \mathbb{A} \) is irreducible, \(W \) is defined over \(\mathbb{Q} \) and has dimension at most \(\dim V - 1 = k - 1 \). Let \(W_1, \ldots, W_r \) be the irreducible components of \(W \). Then we have \(W = \bigcup_{j=1}^r W_j \), where the \(W_j \)'s are defined over a finite extension \(K \) of \(\mathbb{Q} \) and \(\dim W_j \leq k - 1 \) for each \(j \). For \(\mathcal{P} \) outside a finite set of prime ideals of the ring of integers \(\mathcal{O}_K \), \(W_j \) is an absolutely irreducible variety over the finite field \(\mathcal{O}_K / \mathcal{P} \) ([13]). Hence by [12] we have
\[
\#W_j(\mathcal{O}_K / \mathcal{P}) \ll N(\mathcal{P})^{\dim(W_j)} \leq N(\mathcal{P})^{k-1}.
\]
Here, as usual, \(N(\mathcal{P}) = \#(\mathcal{O}_K / \mathcal{P}) \). Choose \(p \) so that it splits completely in \(K \) and let \(\mathcal{P} \cap (p) \). Then \(\mathcal{O}_K / \mathcal{P} \cong \mathbb{F}_p \) and we have
\[
(3.3) \quad \#W(\mathbb{Z}/p\mathbb{Z}) \leq \sum_{j=1}^r \#W_j(\mathcal{O}_K / \mathcal{P}) \ll N(\mathcal{P})^{k-1} = p^{k-1}.
\]
Now proceed as before. For \(L \to \infty \) and any large \(p \) as above, we have
\[
\#(O_{\mathbb{R}}(L) \cap W) = \sum_{x \in O_{\mathbb{R}}(L)} 1 \leq \sum_{x \in W(\mathbb{Z}/p\mathbb{Z})} \sum_{y \in \mathbb{Z}_L^k, |y| \leq L} \sum_{y \equiv \xi (\text{mod } p)} 1.
\]
Similarly the right-hand side can be estimated as
\[
\sum_{x \in W(\mathbb{Z}/p\mathbb{Z})} \left(\frac{X}{p^{1/k}} + O \left(\frac{X^{1-1/k}}{p^{1/k}} \right) \right).
\]
Hence for large \(p \) as in (3.3),
\[
\#(O_{\mathbb{R}}(L) \cap W) \ll Xp^{-1} + X^{1-1/k}.
\]
By the Chebotarev density theorem \([3]\) we can choose a \(p\) which splits completely in \(K\) and which satisfies
\[
X^{1/k}/2 \leq p \leq 2X^{1/k}.
\]
With this choice we get the bound claimed in Lemma 3.1. \(\square\)

4. Proof of Theorem \([2]\)

It is elementary that the number of points on a \(2d\)-regular tree whose distance to a given vertex is at most \([\log L]\) is equal to \(X = \#O_2(L) = \frac{d(2d-1)^{[\log L]}-1}{d-1}\). By the assumptions of Theorem \([2]\) \(V\) is an absolutely irreducible affine variety defined over \(\mathbb{Q}\) with \(\dim V > 0\) and \(f_1, \ldots, f_t\) generate distinct prime ideals in \(\mathbb{Q}[V]\). Hence for \(i = 1, \ldots, t\), the varieties
\[
W_i = V \cap \{f_i = 0\}
\]
are defined over \(\mathbb{Q}\), absolutely irreducible, and of dimension equal to \(\dim V - 1\). We consider the reduction of the varieties (mod \(p\)). By Noether’s theorem \([13]\) and the Lang-Weil Theorem \([12]\), there is a finite set \(S_1\) of primes such that if \(p \not\in S_1\), the varieties \(V(\mathbb{Z}/p\mathbb{Z}), W_i(\mathbb{Z}/p\mathbb{Z})\) are absolutely irreducible and
\[
\begin{align*}
\#V(\mathbb{Z}/p\mathbb{Z}) &= p^{\dim V} + O\left(p^{\dim V - \frac{1}{2}}\right), \\
\#W_i(\mathbb{Z}/p\mathbb{Z}) &= p^\dim V - 1 + O\left(p^{\dim V - \frac{3}{2}}\right).
\end{align*}
\]
By using the uniform expansion property of \(\text{SL}_2\) established in \([2]\) (or assuming a conjecture of Lubotzy for a more general setting), Bourgain, Gamburd and Sarnak proved (Proposition 3.1, \([3]\)) that
\[
\mathbb{E}_X \sum_{\substack{y \in O_2(L) \\ f(y) \equiv 0 \mod d}} 1 = \lambda_d + e_d,
\]
for square-free integers \(d \leq X\) coprime to \(\prod_{p \in S_2} p\). Here \(S_2\) is a finite set of primes containing \(S_1\) and
\[
\lambda_d = \frac{\#V_0(\mathbb{Z}/d\mathbb{Z})}{\#V(\mathbb{Z}/d\mathbb{Z})}, \quad e_d \ll d^{\dim V - 1 + \epsilon}X^{\gamma - 1},
\]
where
\[
V_0(\mathbb{Z}/d\mathbb{Z}) = \{y \in V(\mathbb{Z}/d\mathbb{Z}) : f(y) \equiv 0 \pmod{d}\},
\]
and the absolute constant \(\gamma < 1\) is bounded below by some \(\delta > 0\). Also by Proposition 3.2 in \([3]\), in the sum the terms \(x \in O_2(L)\) with \(f(x) = 0\) can also be omitted without altering (4.1). Clearly \(\lambda_d\) is a multiplicative function of \(d\) coprime to \(\prod_{p \in S_2} p\). With similar arguments as in the proof of Theorem \([1]\) for \(d = l\) a prime and \(l \not\in S_2\) we have
\[
\lambda_l = \frac{t}{l} + O\left(l^{-\frac{3}{2}}\right)
\]
Now using (4.1), (4.2), choosing \(Y = \exp(\log X/\log \log X)\) and \(\beta > 0\) to be sufficiently small, we can similarly verify that the conditions (i)–(vi) of Theorem 3 for \(f\) and \(O_2\) hold. This completes the proof of Theorem \([2]\).

Acknowledgment

The author is grateful to the referee for many valuable suggestions.
References

