Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Miyaoka-Yau inequality for minimal projective manifolds of general type

Author: Yuguang Zhang
Journal: Proc. Amer. Math. Soc. 137 (2009), 2749-2754
MSC (2000): Primary 53C55, 53C44
Published electronically: February 17, 2009
MathSciNet review: 2497488
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this short paper, we prove the Miyaoka-Yau inequality for minimal projective $ n$-manifolds of general type by using Kähler-Ricci flow.

References [Enhancements On Off] (What's this?)

  • 1. T. Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Math. Acad. Sci. Paris Sér. A-B, 283 (1976), A119-A121. MR 0433520 (55:6496)
  • 2. A. L. Besse, Einstein manifolds. Ergebnisse der Math., Springer-Verlag, Berlin-New York, 1987. MR 867684 (88f:53087)
  • 3. P. Cascini, P. La Nave, Kähler-Ricci flow and the minimal model program for projective varieties. arXiv:math/0603064.
  • 4. S.Y. Cheng, S.-T. Yau, Inequality between Chern numbers of singular Kähler surfaces and characterization of orbit space of discrete group of $ {SU}(2, 1)$. Contemporary Math., 49, Amer. Math. Soc., Providence, RI, 1986, 31-44. MR 833802 (87m:53078)
  • 5. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci Flow: Techniques and Applications, Part I: Geometric Aspects. Mathematical Surveys and Monographs, Vol. 135, Amer. Math. Soc., Providence, RI, 2007. MR 2302600 (2008f:53088)
  • 6. F. Fang, Y. Zhang, Z. Zhang, Non-singular solutions to the normalized Ricci flow equation. Math. Ann., 340 (2008), 647-674. MR 2357999 (2009a:53112)
  • 7. R. Hamilton, Three-manifolds with positive Ricci curvature. J. Diff. Geom., 17 (1982), 255-306. MR 664497 (84a:53050)
  • 8. R. Kobayashi, Einstein-Kähler V-metrics on open Satake V-surfaces with isolated quotient singularities. Math. Ann., 272, no. 3 (1985), 385-398. MR 799669 (87b:32050)
  • 9. Y. Miyaoka, On the Chern numbers of surfaces of general type. Invent. Math., 42 (1977), 225-237. MR 0460343 (57:337)
  • 10. G. Tian, Z. Zhang, On the Kähler-Ricci flow on projective manifolds of general type. Chinese Annals of Mathematics Ser. B, 27 (2006), 179-192. MR 2243679 (2007c:32029)
  • 11. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann., 281 (1988), 123-133. MR 944606 (89e:53075)
  • 12. H. Tsuji, Stability of tangent bundles of minimal algebraic varieties, Topology, 27, no. 4 (1988), 429-442. MR 0976585 (90d:14021)
  • 13. S.T. Yau, Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA, 74 (1977), 1798-1799. MR 0451180 (56:9467)
  • 14. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 31 (1978), 339-411. MR 480350 (81d:53045)
  • 15. Z. Zhang, Scalar Curvature Bound for Kähler-Ricci Flows over Minimal Manifolds of General Type. arXiv:math/0801.32481.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C55, 53C44

Retrieve articles in all journals with MSC (2000): 53C55, 53C44

Additional Information

Yuguang Zhang
Affiliation: Department of Mathematics, Capital Normal University, Beijing, People’s Republic of China
Address at time of publication: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

Received by editor(s): October 20, 2008
Received by editor(s) in revised form: November 30, 2008
Published electronically: February 17, 2009
Additional Notes: This work was supported by the SRC program of the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (No. R11-2007-035-02002-0), and by the National Natural Science Foundation of China 10771143.
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society