Blow-up formulas and smooth birational invariants

Author:
Zhaohu Nie

Journal:
Proc. Amer. Math. Soc. **137** (2009), 2529-2539

MSC (2000):
Primary 14F43, 14E99

DOI:
https://doi.org/10.1090/S0002-9939-09-09872-4

Published electronically:
March 20, 2009

MathSciNet review:
2497464

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the blow-up formula for the singular homology of a complex smooth projective variety with a smooth center respects two natural filtrations, namely the topological and the geometric filtrations. This then enables us to establish some smooth birational invariants.

**[AKMW]**Abramovich, D.; Karu, K.; Matsuki, K.; Wł odarczyk, J.*Torification and factorization of birational maps.*J. Amer. Math. Soc. 15 (2002), no. 3, 531-572 (electronic). MR**1896232 (2003c:14016)****[AK1]**Arapura, D.; Kang, S.-J.*Functoriality of the coniveau filtration*. Canad. Math. Bull. 50 (2007), no. 2, 161-171. MR**2317438 (2008f:14018)****[AK2]**Arapura, D.; Kang, S.-J.*Coniveau and the Grothendieck group of varieties*. Michigan Math. J. 54 (2006), no. 3, 611-622. MR**2280497 (2007k:14011)****[Bl]**Bloch, S.*Algebraic cycles and the Beĭlinson conjectures*. The Lefschetz centennial conference, Part I (Mexico City, 1984), 65-79, Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986. MR**860404 (88e:14006)****[DT]**Dold, A.; Thom, R.*Quasifaserungen und unendliche symmetrische Produkte*(German). Ann. of Math. (2) 67 (1958), 239-281. MR**0097062 (20:3542)****[EV]**Esnault, H. and Viehweg, E.*Deligne-Beĭ linson cohomology.*Beĭlinson's conjectures on special values of -functions, 43-91, Perspect. Math., 4, Academic Press, Boston, MA, 1988. MR**944991 (89k:14008)****[FG]**Friedlander, E. M.; Gabber, O.*Cycle spaces and intersection theory.*Topological methods in modern mathematics (Stony Brook, NY, 1991), 325-370, Publish or Perish, Houston, TX, 1993. MR**1215970 (94j:14010)****[FM]**Friedlander, E. M.; Mazur, B.*Filtrations on the homology of algebraic varieties.*With an appendix by Daniel Quillen. Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110 pp. MR**1211371 (95a:14023)****[H1]**Hu, W.*Birational invariants defined by Lawson homology.*To appear in Int. J. Pure Appl. Math. arXiv:math/0511722.**[H2]**Hu, W.*The Generalized Hodge conjecture for -cycles and codimension two algebraic cycles.*arXiv:math/0511725.**[H3]**Hu, W.*Some relations between the topological and geometric filtration for smooth projective varieties.*arXiv:math/0603203.**[L1]**Lawson, H. B., Jr.*Algebraic cycles and homotopy theory.*Ann. of Math. (2) 129 (1989), no. 2, 253-291. MR**986794 (90h:14008)****[Le]**Lewis, J. D.*A survey of the Hodge conjecture.*Second edition. Appendix B by B. Brent Gordon. CRM Monograph Series, 10. American Mathematical Society, Providence, RI, 1999. MR**1683216 (2000a:14010)****[LF]**Lima-Filho, P.*Lawson homology for quasiprojective varieties.*Compositio Math. 84 (1992), no. 1, 1-23. MR**1183559 (93j:14007)****[Ma]**Manin, Ju. I.*Correspondences, motifs and monoidal transformations*(Russian). Mat. Sb. (N.S.) 77 (119) 1968 475-507. MR**0258836 (41:3482)****[Pe]**Peters, C.*Lawson homology for varieties with small Chow groups and the induced filtration on the Griffiths groups.*Math. Z. 234 (2000), no. 2, 209-223. MR**1765879 (2001f:14042)****[Ro]**Roberts, Joel.*Chow's moving lemma.*Algebraic geometry, Oslo, 1970 (Proc. Fifth Nordic Summer School in Math.), pp. 89-96. Wolters-Noordhoff, Gröningen, 1972. MR**0382269 (52:3154)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14F43,
14E99

Retrieve articles in all journals with MSC (2000): 14F43, 14E99

Additional Information

**Zhaohu Nie**

Affiliation:
Department of Mathematics, Penn State Altoona, 3000 Ivyside Park, Altoona, Pennsylvania 16601

Email:
znie@psu.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-09872-4

Keywords:
Lawson homology,
topological filtration,
geometric filtration,
blow-up formula,
birational invariants

Received by editor(s):
October 1, 2007

Received by editor(s) in revised form:
September 30, 2008

Published electronically:
March 20, 2009

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.