Blow-up formulas and smooth birational invariants

Author:
Zhaohu Nie

Journal:
Proc. Amer. Math. Soc. **137** (2009), 2529-2539

MSC (2000):
Primary 14F43, 14E99

Published electronically:
March 20, 2009

MathSciNet review:
2497464

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the blow-up formula for the singular homology of a complex smooth projective variety with a smooth center respects two natural filtrations, namely the topological and the geometric filtrations. This then enables us to establish some smooth birational invariants.

**[AKMW]**Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk,*Torification and factorization of birational maps*, J. Amer. Math. Soc.**15**(2002), no. 3, 531–572 (electronic). MR**1896232**, 10.1090/S0894-0347-02-00396-X**[AK1]**Donu Arapura and Su-Jeong Kang,*Functoriality of the coniveau filtration*, Canad. Math. Bull.**50**(2007), no. 2, 161–171. MR**2317438**, 10.4153/CMB-2007-017-5**[AK2]**Donu Arapura and Su-Jeong Kang,*Coniveau and the Grothendieck group of varieties*, Michigan Math. J.**54**(2006), no. 3, 611–622. MR**2280497**, 10.1307/mmj/1163789917**[Bl]**Spencer Bloch,*Algebraic cycles and the Beĭlinson conjectures*, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR**860404**, 10.1090/conm/058.1/860404**[DT]**Albrecht Dold and René Thom,*Quasifaserungen und unendliche symmetrische Produkte*, Ann. of Math. (2)**67**(1958), 239–281 (German). MR**0097062****[EV]**Hélène Esnault and Eckart Viehweg,*Deligne-Beĭlinson cohomology*, Beĭlinson’s conjectures on special values of 𝐿-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR**944991****[FG]**Eric M. Friedlander and Ofer Gabber,*Cycle spaces and intersection theory*, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 325–370. MR**1215970****[FM]**Eric M. Friedlander and Barry Mazur,*Filtrations on the homology of algebraic varieties*, Mem. Amer. Math. Soc.**110**(1994), no. 529, x+110. With an appendix by Daniel Quillen. MR**1211371**, 10.1090/memo/0529**[H1]**Hu, W.*Birational invariants defined by Lawson homology.*To appear in Int. J. Pure Appl. Math. arXiv:math/0511722.**[H2]**Hu, W.*The Generalized Hodge conjecture for -cycles and codimension two algebraic cycles.*arXiv:math/0511725.**[H3]**Hu, W.*Some relations between the topological and geometric filtration for smooth projective varieties.*arXiv:math/0603203.**[L1]**H. Blaine Lawson Jr.,*Algebraic cycles and homotopy theory*, Ann. of Math. (2)**129**(1989), no. 2, 253–291. MR**986794**, 10.2307/1971448**[Le]**James D. Lewis,*A survey of the Hodge conjecture*, 2nd ed., CRM Monograph Series, vol. 10, American Mathematical Society, Providence, RI, 1999. Appendix B by B. Brent Gordon. MR**1683216****[LF]**Paulo Lima-Filho,*Lawson homology for quasiprojective varieties*, Compositio Math.**84**(1992), no. 1, 1–23. MR**1183559****[Ma]**Ju. I. Manin,*Correspondences, motifs and monoidal transformations*, Mat. Sb. (N.S.)**77 (119)**(1968), 475–507 (Russian). MR**0258836****[Pe]**C. Peters,*Lawson homology for varieties with small Chow groups and the induced filtration on the Griffiths groups*, Math. Z.**234**(2000), no. 2, 209–223. MR**1765879**, 10.1007/s002099900055**[Ro]**Joel Roberts,*Chow’s moving lemma*, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 89–96. Appendix 2 to: “Motives” (Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), pp. 53–82, Wolters-Noordhoff, Groningen, 1972) by Steven L. Kleiman. MR**0382269**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14F43,
14E99

Retrieve articles in all journals with MSC (2000): 14F43, 14E99

Additional Information

**Zhaohu Nie**

Affiliation:
Department of Mathematics, Penn State Altoona, 3000 Ivyside Park, Altoona, Pennsylvania 16601

Email:
znie@psu.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-09872-4

Keywords:
Lawson homology,
topological filtration,
geometric filtration,
blow-up formula,
birational invariants

Received by editor(s):
October 1, 2007

Received by editor(s) in revised form:
September 30, 2008

Published electronically:
March 20, 2009

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.