On the norm of the Rademacher projection and related inequalities
Author:
Lesław Skrzypek
Journal:
Proc. Amer. Math. Soc. 137 (2009), 2661-2669
MSC (2000):
Primary 41A65, 41A44, 42C10
DOI:
https://doi.org/10.1090/S0002-9939-09-09875-X
Published electronically:
February 25, 2009
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The purpose of this paper is to find the exact norm of the Rademacher projection onto Namely, we prove






- 1. A. G. Aksoy and B. L. Chalmers, Minimal numerical-radius extensions of operators, Proc. Amer. Math. Soc. 135 (2007), pp. 1039-1050 (electronic). MR 2262904 (2007j:46002)
- 2. D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of the best approximation, Dokl. Akad. Nauk SSSR 120 (1958), pp. 1175-1177. MR 0098941 (20:5387)
- 3. J. Blatter and E. W. Cheney, Minimal projections on hyperplanes in sequence spaces, Ann. Mat. Pura Appl. (4) 101 (1974), pp. 215-227. MR 0358179 (50:10644)
- 4.
B. L. Chalmers and F. T. Metcalf, Critical points of the
-dimensional Khintchine ratio and Rademacher projection norms, Approximation theory VI, Vol. I (College Station, TX, 1989), Academic Press, Boston, MA, 1989, pp. 125-128. MR 1090980 (91m:41056)
- 5.
-, The determination of minimal projections and extensions in
, Trans. Amer. Math. Soc. 329 (1992), pp. 289-305. MR 1034660 (92e:41017)
- 6. -, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), pp. 31-46. MR 1332442 (96c:46014)
- 7. E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), pp. 249-258. MR 0256044 (41:704)
- 8. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), pp. 396-414. MR 1501880
- 9.
T. Figiel, T. Iwaniec, and A. Pełczyński, Computing norms and critical exponents of some operators in
-spaces, Studia Math. 79 (1984), pp. 227-274. MR 781720 (86m:46018)
- 10. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1981), pp. 231-283 (1982). MR 654838 (83m:60031)
- 11. J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), pp. 38-48. MR 0146649 (26:4169)
- 12. M. Kato, Generalized Clarkson's inequalities and the norms of the Littlewood matrices, Math. Nachr. 114 (1983), pp. 163-170. MR 745054 (85i:47011)
- 13.
R. Komorowski, On the best possible constants in the Khintchine inequality for
, Bull. London Math. Soc. 20 (1988), pp. 73-75. MR 916079 (89e:60037)
- 14.
P. V. Lambert, On the minimum norm property of the Fourier projection in
-spaces, Bull. Soc. Math. Belg. 21 (1969), pp. 370-391. MR 0273293 (42:8173)
- 15. R. Latała, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997), pp. 1502-1513. MR 1457628 (98h:60021)
- 16. G. Lewicki and L. Skrzypek, Chalmers-Metcalf operator and uniqueness of minimal projections, J. Approx. Theory 148 (2007), pp. 71-91. MR 2356576
- 17. -, On properties of Chalmers-Metcalf operators, Banach spaces and their applications in analysis, Walter de Gruyter, Berlin, 2007, pp. 375-389. MR 2374721
- 18. S. M. Lozinskiĭ, On a class of linear operations, Doklady Akad. Nauk SSSR (N. S.) 61 (1948), pp. 193-196. MR 0026699 (10:188c)
- 19. L. Maligranda and L. E. Persson, On Clarkson's inequalities and interpolation, Math. Nachr. 155 (1992), pp. 187-197. MR 1231264 (94h:46113)
- 20. F. T. Metcalf, An integral identity for the Rademacher functions, J. Math. Anal. Appl. 189 (1995), pp. 393-408. MR 1312052 (95k:42050)
- 21. P. D. Morris and E. W. Cheney, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), pp. 61-76. MR 0358188 (50:10653)
- 22. W. Odyniec and G. Lewicki, Minimal projections in Banach spaces. Problems of existence and uniqueness and their application. Lecture Notes in Math., vol. 1449, Springer-Verlag, Berlin, 1990. MR 1079547 (92a:41021)
- 23. G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275 (91d:52005)
- 24.
B. Shekhtman and L. Skrzypek, On the non-uniqueness of minimal projection in
spaces, J. Approx. Theory. Article in press. doi:10.1016/j.jat.2008.08.006
- 25. -, Norming points and unique minimality of orthogonal projections, Abstr. Appl. Anal. (2006), Art. ID 42305, 17 pp. MR 2211664 (2006k:46043)
- 26.
L. Skrzypek, On the non-uniqueness of minimal projections in
, preprint.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A65, 41A44, 42C10
Retrieve articles in all journals with MSC (2000): 41A65, 41A44, 42C10
Additional Information
Lesław Skrzypek
Affiliation:
Department of Mathematics, University of South Florida, 4202 E. Fowler Avenue, PHY 114, Tampa, Florida 33620-5700
Email:
skrzypek@math.usf.edu
DOI:
https://doi.org/10.1090/S0002-9939-09-09875-X
Keywords:
Minimal projections,
Rademacher projection
Received by editor(s):
October 9, 2008
Published electronically:
February 25, 2009
Communicated by:
Nigel J. Kalton
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.