Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hypercyclicity of weighted convolution operators on homogeneous spaces


Authors: C. Chen and C-H. Chu
Journal: Proc. Amer. Math. Soc. 137 (2009), 2709-2718
MSC (2000): Primary 47A16, 47B37, 47B38, 43A85, 44A35
DOI: https://doi.org/10.1090/S0002-9939-09-09889-X
Published electronically: March 10, 2009
MathSciNet review: 2497483
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ 1\leq p < \infty$. We show that a weighted translation operator on the $ L^p$ space of a homogeneous space is hypercyclic under some condition on the weight. This condition is also necessary in the discrete case and is equivalent to hereditary hypercyclicity of the operator. The condition can be strengthened to characterise topologically mixing weighted translation operators on discrete spaces.


References [Enhancements On Off] (What's this?)

  • 1. S.I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997) 384-390. MR 1469346 (98h:47028a)
  • 2. F. Bayart and S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358 (2006) 5083-5117. MR 2231886 (2007e:47013)
  • 3. F. Bayart and S. Grivaux, Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proc. Lond. Math. Soc. (3) 94 (2007) 181-210. MR 2294994 (2008i:47019)
  • 4. F. Bayart and É. Matheron, Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces, J. Funct. Anal. 250 (2007) 426-441. MR 2352487 (2008k:47016)
  • 5. T. Bermúdez, A. Bonilla, J.A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170 (2005) 57-75. MR 2142183 (2005m:47013)
  • 6. L. Bernal-González, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc. 127 (1999) 1003-1010. MR 1476119 (99f:47010)
  • 7. L. Bernal-González and K.-G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math. 157 (2003) 17-32. MR 1980114 (2003m:47013)
  • 8. J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999) 94-112. MR 1710637 (2000f:47012)
  • 9. G.D. Birkhoff, Démonstration d'un théorème élémentaire sur les fonctions entières, C.R. Acad. Sci. Paris 189 (1929) 473-475.
  • 10. J. Bonet, Hypercyclic and chaotic convolution operators, J. London Math. Soc. (2) 62 (2000) 253-262. MR 1772185 (2001g:47053)
  • 11. J. Bonet and A. Peris, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159 (1998) 587-595. MR 1658096 (99k:47044)
  • 12. J-C. Chen and S-Y. Shaw, Topological mixing and hypercyclicity criterion for sequences of operators, Proc. Amer. Math. Soc. 134 (2006) 3171-3179. MR 2231900 (2007d:47008)
  • 13. C-H. Chu, Matrix convolution operators on groups, Lecture Notes in Math. 1956, Springer-Verlag, Berlin-Heidelberg, 2008. MR 2450997
  • 14. G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc. 132 (2004) 385-389. MR 2022360 (2004i:47017)
  • 15. M. De La Rosa and C. Read, A hypercyclic operator whose direct sum $ T\oplus T$ is not hypercyclic, J. Operator Theory (to appear).
  • 16. R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, Ergod. Th. Dynam. Sys. 21 (2001) 1411-1427. MR 1855839 (2002j:47030)
  • 17. W. Desch, W. Schappacher and G. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergod. Th. Dynam. Sys. 17 (1997) 793-819. MR 1468101 (98j:47083)
  • 18. G.B. Folland, A course in abstract harmonic analysis, CRC Press, Boca Raton, FL, 1995. MR 1397028 (98c:43001)
  • 19. R.M. Gethner and J.H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987) 281-288. MR 884467 (88g:47060)
  • 20. G. Godefroy and J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991) 229-269. MR 1111569 (92d:47029)
  • 21. K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999) 345-381. MR 1685272 (2000c:47001)
  • 22. K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 97 (2003) 273-286. MR 2068180 (2005c:47010)
  • 23. C. Kitai, Invariant closed sets for linear operators, PhD Thesis, University of Toronto, 1982.
  • 24. G.R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952) 72-87. MR 0053231 (14:741d)
  • 25. A. Peris and L. Saldivia, Syndetically hypercyclic operators, Integr. Equ. Oper. Theory 51 (2005) 275-281. MR 2120081 (2005h:47017)
  • 26. H. Petersson, Spaces that admit hypercyclic operators with hypercyclic adjoints, Proc. Amer. Math. Soc. 134 (2006) 1671-1676. MR 2204278 (2007b:47020)
  • 27. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969) 17-22. MR 0241956 (39:3292)
  • 28. H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995) 993-1004. MR 1249890 (95e:47042)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A16, 47B37, 47B38, 43A85, 44A35

Retrieve articles in all journals with MSC (2000): 47A16, 47B37, 47B38, 43A85, 44A35


Additional Information

C. Chen
Affiliation: School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
Email: c.chen@qmul.ac.uk

C-H. Chu
Affiliation: School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
Email: c.chu@qmul.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-09-09889-X
Keywords: Hypercyclic operator, topologically mixing operator, convolution, homogeneous space, $L^p$-space
Received by editor(s): October 28, 2008
Published electronically: March 10, 2009
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society