Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on classification of submodules in $ H^{2}(D^{2})$


Author: Rongwei Yang
Journal: Proc. Amer. Math. Soc. 137 (2009), 2655-2659
MSC (2000): Primary 47A13; Secondary 46E20
DOI: https://doi.org/10.1090/S0002-9939-09-09893-1
Published electronically: March 30, 2009
MathSciNet review: 2497478
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Hardy spaces $ H^{2}(D^{2})$ can be viewed as a module over the polynomial ring $ C[z_1,z_2]$. Based on a study of core operator, a new equivalence relation for submodules, namely congruence, was introduced. This paper gives a classification of congruent submodules by the rank of core operators.


References [Enhancements On Off] (What's this?)

  • [CG] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1988884 (2004d:47024)
  • [DPSY] R. Douglas, V. Paulsen, C.-H. Sah and K. Yan, Algebraic reduction and rigidity for Hilbert modules, Amer. J. Math. 117 (1995), No. 1, 75-92. MR 1314458 (95k:46113)
  • [GY] K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), 205-222. MR 2048190 (2005m:46048)
  • [II] K. J. Izuchi and K. H. Izuchi, Rank one commutators on invariant subspaces of the Hardy space on the bidisk, J. Math. Anal. Appl. 316 (2006), 1-8. MR 2201744 (2006k:47012)
  • [INS] K. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisk (II), J. Oper. Theory 51 (2004), No. 2, 361-376. MR 2074186 (2005c:47008)
  • [Ru] W. Rudin, Function Theory in Polydisks, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841 (41:501)
  • [Ya1] R. Yang, On two-variable Jordan blocks, Acta Sci. Math. (Szeged) 69 (2003), No. 3-4, 739-754. MR 2034205 (2004j:47011)
  • [Ya2] R. Yang, The core operator and congruent submodules, J. Funct. Anal. 228 (2005), No. 2, 469-489. MR 2175415 (2006e:47015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A13, 46E20

Retrieve articles in all journals with MSC (2000): 47A13, 46E20


Additional Information

Rongwei Yang
Affiliation: Department of Mathematics and Statistics, The State University of New York at Albany, Albany, New York 12222
Email: ryang@@math.albany.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09893-1
Keywords: Core operator, congruence, Hardy space, submodules
Received by editor(s): September 9, 2008
Published electronically: March 30, 2009
Additional Notes: This work is supported in part by a grant from the National Science Foundation (DMS 0500333).
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society