ON SUMS INVOLVING COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS

GUANGSHI LÜ

(Communicated by Wen-Ching Winnie Li)

ABSTRACT. Let $L(s, \pi)$ be the automorphic L-function associated to an automorphic irreducible cuspidal representation π of GL_m over \mathbb{Q}, and let $a_\pi(n)$ be the nth coefficient in its Dirichlet series expansion. In this paper we prove that if at every finite place p, π_p is unramified, then for any $\varepsilon > 0$,

$$A_\pi(x) = \sum_{n \leq x} a_\pi(n) \ll_{\varepsilon, \pi} \begin{cases} \frac{x^{m/2} + \varepsilon}{x^{m/2} - m + 1} & \text{if } m = 2, \\ \frac{x^{m/2} + \varepsilon}{x^{m/2} - m + 1} & \text{if } m \geq 3. \end{cases}$$

1. INTRODUCTION AND MAIN RESULTS

Let $a(n)$ be an arithmetic function. It is an important problem in number theory to establish the asymptotic formula for the summatory function

$$A(x) = \sum_{n \leq x} a(n).$$

The asymptotic behavior of $A(x)$ is often closely linked with the analytic properties of the Dirichlet series

$$A(s) = \sum_{n=1}^{\infty} a(n)n^{-s}.$$

The Langlands program predicts that the most general L-functions arise from automorphic representations of GL_m over a number field and that such L-functions can be decomposed into products of primitive automorphic L-functions arising from irreducible cuspidal representations of GL_m over \mathbb{Q}. Therefore in this paper we focus our attention on primitive automorphic L-functions of GL_m over \mathbb{Q}.

To be precise, let us recall some basic facts about primitive automorphic L-functions of GL_m over \mathbb{Q} (see Godement and Jacquet [4], Jacquet and Shalika [8], or Rudnick and Sarnak [11]). Let π be an automorphic irreducible cuspidal representation of GL_m over \mathbb{Q}. Then there exists a finite set \mathfrak{F} of places of \mathbb{Q} such that π is unramified at all finite places $p \notin \mathfrak{F}$.
representation of GL_m over \mathbb{Q} with unitary central character. Then π is a restricted tensor product:

$$\pi = \otimes_p \pi_p.$$

To π one associates an Euler product

$$(1.1) \quad L(s, \pi) = \prod_p L(s, \pi_p)$$

given by a product of local factors. Outside of a finite set of primes, π_p is unramified. To every finite place p where π_p is unramified we associate a semisimple conjugacy class

$$A_\pi(p) = \begin{pmatrix} \alpha_{\pi, p}(1) \\ \vdots \\ \alpha_{\pi, p}(m) \end{pmatrix},$$

and we define the local L-function for the finite place p as

$$(1.2) \quad L(s, \pi_p) = \det(I - p^{-s} A_\pi(p))^{-1} = \prod_{j=1}^{m} (1 - \alpha_{\pi, p}(j)p^{-s})^{-1}.$$

It is possible to write the local factors at ramified primes p in the form of (1.2) with the convention that some of the $\alpha_{\pi, p}(j)$’s may be zero. In fact, the local factors at the ramified primes can best be described by the Langlands parameters of π_p.

The general Ramanujan conjectures for cuspidal automorphic representations π of GL_m over \mathbb{Q} assert that for p unramified, $|\alpha_{\pi, p}(j)| = 1$. For certain π, this conjecture has been proved. But in general it is still open. In this direction, Serre [12] first observed that the analytic properties of the Rankin-Selberg L-function, in conjunction with Landau’s lemma, can lead to

$$(1.3) \quad |\alpha_{\pi, p}(j)| \leq p^{1/2 - 1/(m^2 + 1)}.$$

For $m = 2$, this has been refined in [9] to

$$(1.4) \quad |\alpha_{\pi, p}(j)| \leq p^{7/64}.$$

The product (1.1) over primes gives a Dirichlet series representation: for $\Re s > 1$,

$$(1.5) \quad L(s, \pi) = \sum_{n=1}^{\infty} \frac{a_{\pi}(n)}{n^s}.$$

The aim of this paper is to study the summatory function for the coefficients $a_{\pi}(n)$ of automorphic L-functions attached to automorphic irreducible cuspidal representations of GL_m over \mathbb{Q}, i.e.

$$A_\pi(x) = \sum_{n \leq x} a_{\pi}(n).$$

Our main result is the following.

Theorem 1.1. Let $L(s, \pi)$ be the automorphic L-function associated to an automorphic irreducible cuspidal representation π of GL_m over \mathbb{Q}, and let $a_{\pi}(n)$ be its nth coefficient in (1.5). If at every finite place p, π_p is unramified, then we have that for any $\varepsilon > 0$,

$$A_\pi(x) = \sum_{n \leq x} a_{\pi}(n) \ll_{\varepsilon, \pi} \begin{cases} \\ x^{\frac{71}{192} + \varepsilon} & \text{if } m = 2, \\
x^{\frac{m^2 - m + \varepsilon}{m^2 + 1}} & \text{if } m \geq 3, \\ \end{cases}$$
where throughout this paper the notation \(\ll_{\varepsilon, \pi} \) means that the implied constant depends on \(\varepsilon \) and \(\pi \).

Our Theorem 1.1, for which the Ramanujan-Petersson conjecture is not known to hold, can be compared with the results of Iwaniec and Friedlander [3]: if the Ramanujan-Petersson conjecture is assumed, then the coefficients \(a(n) \) of a general \(L \)-function of degree \(m \) with a functional equation and suitable analytic properties satisfy

\[
\sum_{n \leq x} a(n) = \text{main term} + O_L \left(x^{\frac{m-1}{2}} \varepsilon \right).
\]

Our result can also be compared with one result of Miller [10], which states that for any \(\varepsilon > 0 \) and any real number \(\alpha \),

\[
\sum_{n \leq x} a(m, n)e(n\alpha) \ll_{\varepsilon, m, \Phi} x^{\frac{4}{3}\varepsilon},
\]

where \(a(m, n) \) are the Fourier coefficients of a cusp form \(\Phi \) for \(GL(3, \mathbb{Z}) \setminus GL(3, \mathbb{R}) \).

As an application of our Theorem 1.1, we shall consider the sum

\[
\sum_{n \leq x} t(n^2),
\]

where \(t(n) \) is the \(n \)th normalized Fourier coefficient of a Hecke-Maass cusp form \(\varphi \) corresponding to the eigenvalue \(l = \kappa^2 + \frac{1}{4} \) with respect to the full modular group \(SL(2, \mathbb{Z}) \), which coincides with the eigenvalue of the \(n \)th Hecke operator \(T_n \).

Corollary 1.2. Let \(t(n) \) be the \(n \)th normalized Fourier coefficient of a Hecke-Maass cusp form \(\varphi \) with respect to the full modular group \(SL(2, \mathbb{Z}) \). Then for any \(\varepsilon > 0 \), we have

\[
S(x) = \sum_{n \leq x} t(n^2) \ll_{\varepsilon, \varphi} x^{\frac{3}{4} + \varepsilon},
\]

where throughout this paper the notation \(\ll_{\varepsilon, \varphi} \) means that the implied constant depends on \(\varepsilon \) and the Maass cusp form \(\varphi \).

Our result improves a previous result given by Ivić [6]:

\[
S(x) \ll_{\varphi} x \exp \left(-A(\log x)^{\frac{1}{2}} (\log \log x)^{-\frac{1}{2}} \right),
\]

where \(A > 0 \) is a suitable constant.

2. Three lemmas

To prove Theorem 1.1, we need the following three lemmas.

Lemma 2.1. Let \(L(f, s) \) be a Dirichlet series with Euler product of degree \(m \geq 1 \), which is defined by

\[
L(f, s) = \sum_{n=1}^{\infty} \lambda_f(n)n^{-s} = \prod_{p < \infty} \prod_{j=1}^{m} \left(1 - \frac{\alpha_f(p, j)}{p^s} \right)^{-1},
\]

where \(\alpha_f(p, j), j = 1, \cdots, m \), are the local parameters of \(L(f, s) \) at prime \(p \). This series and Euler product are absolutely convergent for \(\text{Re} s > 1 \). Let the gamma
factor be given by

\[L_\infty(f, s) = \prod_{j=1}^{m} \pi^{-\frac{s+\mu_f(j)}{2}} \Gamma\left(\frac{s+\mu_f(j)}{2}\right), \]

where \(\mu_f(j), j = 1, \ldots, m, \) are the local parameters of \(L(f, s) \) at \(\infty \). We also define the completed \(L \)-function \(\Lambda(f, s) \) by

\[\Lambda(f, s) = q(f)^{\frac{1}{2}} L_\infty(f, s) L(f, s), \]

where \(q(f) \) is the conductor of \(L(f, s) \). We assume that \(\Lambda(f, s) \) admits an analytic continuation to the whole complex plane \(\mathbb{C} \) and is an entire function. Assume that it also satisfies a functional equation

\[\Lambda(f, s) = \epsilon_f \Lambda(\bar{f}, 1 - s) \]

where \(\epsilon_f \) is the root number with \(|\epsilon_f| = 1 \) and \(\bar{f} \) is the dual of \(f \) such that \(\lambda_f(n) = \bar{\lambda}_f(n), \mu_f(j) = \bar{\mu}_f(j), \) and \(q(\bar{f}) = q(f) \).

Then for every \(\eta \geq 0 \) we have

\[\sum_{n \leq x} \lambda_f(n) \ll_f x^{\frac{1}{2} - \frac{\beta}{m} + \left(\frac{m}{2} - \frac{1}{2}\right)\eta} + \sum_{x < n \leq x^{1 + \frac{1}{2m} - \eta}} |\lambda_f(n)|. \]

Proof. This is a special case of Theorem 4.1 in Chandrasekharan and Narasimhan [2] with

\[\delta = 1, \quad A = \frac{m}{2}, \quad \beta = 1, \quad u = \frac{1}{2} - \frac{1}{2m} \quad \text{and} \quad q = -\infty. \]

We reformulate it in the language used in Chapter 5 of Iwaniec and Kowalski [7].

Lemma 2.2. With the same notation as in Lemma 2.1, we assume that the Dirichlet series \(L(f, s) \) with Euler product of degree \(m \geq 1 \) has non-negative coefficients, i.e. \(\lambda_f(n) \geq 0 \), and converges for \(\text{Re} s \) sufficiently large. Suppose further that \(L(f, s) \) has a meromorphic continuation to \(\mathbb{C} \) with, at most, poles of finite order at \(s = 0, 1 \). Assume also that \(L(f, s) \) is of finite order and satisfies a functional equation

\[\Lambda(f, s) = \epsilon_f \Lambda(f, 1 - s). \]

Then we have that for any \(\varepsilon > 0 \),

\[\sum_{n \leq x} \lambda_f(n) = P(\log x)x + O_{\varepsilon, f}\left(x^{\frac{m+1}{m+\varepsilon}}\right), \]

where \(P \) is a polynomial depending only on \(L \), whose degree equals the order of the pole of \(L(f, s) \) at \(s = 1 \).

Proof. This is a refined version of Landau’s lemma; see Barthel and Ramakrishnan [1].

Lemma 2.3. Let \(b(1), b(2), \ldots \) be a sequence of complex numbers. Define the sequence \(a(0) = 1, a(1), a(2), \ldots \) by means of the formal identity

\[\exp\left(\sum_{k=1}^{\infty} \frac{b(k)}{k} x^k\right) = \sum_{n=0}^{\infty} a(n)x^n. \]
For \(j = 1 \) or \(2 \), define the sequence \(A_j(0) = 1, A_j(1), A_j(2), \ldots \) by means of the formal identity
\[
\exp \left(\sum_{k=1}^{\infty} \frac{|b(k)|^j}{k} x^k \right) = \sum_{n=0}^{\infty} A_j(n)x^n.
\]
Then \(A_j(n) \geq |a(n)|^j \).

Proof. See Lemma 3.1 in Soundararajan [13].

3. PROOF OF THEOREM 1.1

Associated with \(\pi \), an automorphic representation of \(\text{GL}_m \) over \(\mathbb{Q} \), there is also an Archimedean \(L \)-factor defined as
\[
L(s, \pi_\infty) = \prod_{j=1}^{m} \pi^{-\frac{s+\mu_{\pi}(j)}{2}} \Gamma \left(\frac{s + \mu_{\pi}(j)}{2} \right),
\]
where \(\mu_{\pi}(j) \), \(j = 1, 2, 3, \ldots, m \), are local parameters at \(\infty \). In connection with (1.1), the completed \(L \)-function associated to \(\pi \) is defined by
\[
\Lambda(s, \pi) = L(s, \pi_\infty) L(s, \pi).
\]
This completed \(L \)-function has analytic continuation, is entire everywhere (note that in our case \(m \geq 2 \)), and satisfies the functional equation
\[
\Lambda(s, \pi) = \epsilon_\pi q_\pi^{-\frac{s}{2}} \Lambda(1 - s, \pi^\dagger),
\]
where \(\pi^\dagger \) is the contragredient of \(\pi \), \(\epsilon_\pi \) is a complex number of modulus 1, and \(q_\pi \) is a positive integer called the arithmetic conductor of \(\pi \). For any place \(p \leq \infty \), \(\pi_p \) is equivalent to the complex conjugate \(\pi^\dagger_p \), and we have
\[
\{\alpha_{\pi, p}(j)\} = \{\alpha_{\pi, p}(j^\dagger)\}, \quad \{\mu_{\pi}(j)\} = \{\mu_{\pi^\dagger}(j)\}.
\]
Therefore, from Lemma 2.1 and (3.1), we have
\[
A_{\pi}(x) = \sum_{n \leq x} a_{\pi}(n) \ll_{\pi} x^{\frac{1}{2} - \frac{3}{16m} + \frac{1}{16m} + \frac{1}{16m} \eta} + \sum_{x < n \leq x + x^{\frac{1}{2} - \frac{1}{16m} - \eta}} |a_{\pi}(n)|,
\]
for every \(\eta \geq 0 \).

For \(m = 2 \), from (1.4) we have
\[
|a_{\pi}(n)| \leq \tau(n)n^{\frac{3}{8m}},
\]
where \(\tau(n) \) is the divisor function. From (3.2) with \(m = 2 \), we have
\[
A_{\pi}(x) = \sum_{n \leq x} a_{\pi}(n) \ll_{\pi} x^{\frac{1}{2} + \frac{1}{8} \eta} + \sum_{x < n \leq x + x^{\frac{1}{2} - \frac{1}{8} - \eta}} |a_{\pi}(n)|.
\]

From (3.3), we obtain
\[
A_{\pi}(x) \ll_{\pi} x^{\frac{1}{2} + \frac{1}{8} \eta} + x^{\frac{39}{56} - \eta + \varepsilon}.
\]
On taking \(\eta = \frac{39}{56} \), we have
\[
A_{\pi}(x) \ll_{\pi} x^{\frac{23}{70} + \varepsilon}.
\]
In order to give the result for \(m \geq 3 \), we recall some basic facts about the Rankin-Selberg \(L \)-function \(L(s, \pi \times \tilde{\pi}) \) associated to \(\pi \) and its contragredient \(\tilde{\pi} \). It is defined as a product of local factors:

\[
L(s, \pi \times \tilde{\pi}) = \prod_p L(s, \pi_p \times \tilde{\pi}_p).
\]

For unramified primes \(p \), the local factor is given by

\[
L(s, \pi_p \times \tilde{\pi}_p) = \prod_{j=1}^{m} \prod_{k=1}^{m} (1 - \alpha_{\pi, p}(j)\alpha_{\pi, p}(k)p^{-s})^{-1}.
\]

It can be defined similarly at primes \(p \) where \(\pi_p \) is ramified. By (1.3), the product \(\prod_p L(s, \pi_p \times \tilde{\pi}_p) \) converges absolutely on \(\text{Res} > 2 - \frac{2}{m+1} \) (in fact on \(\text{Res} > 1 \); see e.g. Jacquet and Shalika [8] or Rudnick and Sarnak [11]). We write this product as a Dirichlet series:

\[
L(s, \pi \times \tilde{\pi}) = \sum_{n=1}^{\infty} \frac{a_{\pi \times \tilde{\pi}}(n)}{n^s}.
\]

The completed Rankin-Selberg \(L \)-function is defined by

\[
\Lambda(s, \pi \times \tilde{\pi}) = L(s, \pi_\infty \times \tilde{\pi}_\infty)L(s, \pi \times \tilde{\pi})
\]

with

\[
L(s, \pi_\infty \times \tilde{\pi}_\infty) = \prod_{j=1}^{m^2} \pi^{-\frac{s+\mu_{\pi \times \tilde{\pi}}(j)}{2}} \Gamma\left(\frac{s + \mu_{\pi \times \tilde{\pi}}(j)}{2}\right).
\]

When \(\pi_\infty \) is unramified,

\[
\{\mu_{\pi \times \tilde{\pi}}(j)\}_{1 \leq j \leq m^2} = \{\mu_{\pi}(j) + \mu_{\tilde{\pi}}(k)\}_{1 \leq j \leq m, 1 \leq k \leq m}.
\]

It is known that \(a_{\pi \times \tilde{\pi}}(n) \geq 0 \) and \(L(s, \pi \times \tilde{\pi}) \) has a simple pole at \(s = 1 \). The completed Rankin-Selberg \(L \)-function \(\Lambda(s, \pi \times \tilde{\pi}) \) has a meromorphic continuation to the entire complex plane and satisfies a functional equation

\[
\Lambda(s, \pi \times \tilde{\pi}) = \epsilon_{\pi \times \tilde{\pi}} \frac{s-1}{s} \Lambda(1 - s, \pi \times \tilde{\pi}),
\]

where \(|\epsilon_{\pi \times \tilde{\pi}}| = 1 \) and \(q_{\pi \times \tilde{\pi}} > 0 \).

Therefore by applying Lemma 2.2 to \(L(s, \pi \times \tilde{\pi}) \) with degree \(m^2 \), we have

\[
\sum_{n \leq x} a_{\pi \times \tilde{\pi}}(n) = c_\pi x + O_{\epsilon, \pi}(x^{\frac{m^2-1}{m^2+1} + \epsilon}),
\]

where \(c_\pi \) is a positive constant.

From (3.10), we find that for any \(\eta \geq 0 \),

\[
\sum_{x < n \leq x + x^{1-\frac{1}{m^2-1} - \eta}} a_{\pi \times \tilde{\pi}}(n) \ll_{\epsilon, \pi} x^{\frac{m^2-1}{m^2+1} + \epsilon}.
\]

From (3.7), (3.8) and (3.9), we have that for \(\text{Res} > 2 - \frac{2}{m+1} \),

\[
\sum_{k=0}^{\infty} \frac{a_{\pi \times \tilde{\pi}}(p^k)}{p^{ks}} = \exp\left(\sum_{v=1}^{\infty} \frac{a_v(p^v)}{v} p^{-v s}\right),
\]
where
\[\lambda_p(p^v) = \sum_{j=1}^{m} \alpha_{\pi,p}(j)^v. \]

From (1.1), (1.2) and (1.5), we have
\[\sum_{k=0}^{\infty} \frac{a_{\pi}(p^k)}{p^{ks}} = \exp \left(\sum_{v=1}^{\infty} \frac{\lambda_p(p^v)}{v} p^{-vs} \right). \]

From (3.12), (3.13) and Lemma 2.3 with \(j = 2 \), we have that for an unramified prime \(p \),
\[|a_{\pi}(p^k)|^2 \leq a_{\pi \times \tilde{\pi}}(p^k), \]
and thus in our case
\[|a_{\pi}(n)|^2 \leq a_{\pi \times \tilde{\pi}}(n). \]

Therefore we have
\[\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} |a_{\pi}(n)|^2 \ll \sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} a_{\pi \times \tilde{\pi}}(n). \]

Now we begin to estimate (3.2). By Cauchy’s inequality, we find that the short-interval sum in (3.2) satisfies
\[\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} |a_{\pi}(n)| \leq \left(\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} |a_{\pi}(n)|^2 \right)^{\frac{1}{2}} \left(\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} 1 \right)^{\frac{1}{2}}. \]

By (3.11) and (3.14), we have
\[\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} |a_{\pi}(n)|^2 \ll_{\epsilon, \pi} \frac{m^2 - 1}{m^2 + 1} \eta + \frac{m^2 - 1}{2m^2 + 2} + \epsilon. \]

From (3.15) and (3.16), we obtain
\[\sum_{x < n \leq x + x^{1 - \frac{1}{m} - \eta}} |a_{\pi}(n)| \ll_{\epsilon, \pi} x^{\frac{1}{2} - \frac{1}{2m} - \frac{m^2 - 1}{2m^2 + 2} + \epsilon}. \]

Inserting (3.17) into (3.2), we have
\[A_{\pi}(x) = \sum_{n \leq x} a_{\pi}(n) \ll_{\epsilon, \pi} x^{\frac{1}{2} - \frac{1}{2m} + \left(\frac{m}{2} - \frac{1}{2} \right) \eta + \frac{1}{2} - \frac{1}{2m} - \frac{m^2 - 1}{m^2 + 1} \eta + \frac{m^2 - 1}{m^2 + 1} + \epsilon}. \]

On taking \(\eta = \frac{m^2 - 1}{m(m^2 + 1)} \), we get
\[A_{\pi}(x) \ll_{\epsilon, \pi} x^{\frac{m^2 - m}{m^2 + 1} + \epsilon}. \]

This completes the proof of Theorem 1.1.
4. Proof of Corollary 1.2

To prove Corollary 1.2, we recall some basic facts from the books of Iwaniec and Kowalski [7], and of Goldfeld [5]. Associated to each Hecke-Maass cusp form \(\varphi \) for the full modular group \(SL(2, \mathbb{Z}) \) there is an \(L \)-function \(L(\varphi, s) \), which is defined, for \(\text{Re} \, s > 1 \), by

\[
L(\varphi, s) = \sum_{n=1}^{\infty} t(n)n^{-s} = \prod_{p} (1 - t(p)p^{-s} + p^{-2s})^{-1}
\]

with \(\alpha_p + \alpha'_p = t(p) \) and \(\alpha_p\alpha'_p = 1 \). The symmetric square \(L \)-function \(L(\text{Sym}^2 \varphi, s) \) is defined, for \(\text{Re} \, s > 1 \), by

\[
L(\text{Sym}^2 \varphi, s) = \zeta(2s) \sum_{n=1}^{\infty} t(n^2)n^{-s} = \prod_{p} \left(1 - \frac{\alpha^2_p}{p^s}\right)^{-1} \left(1 - \frac{1}{p^s}\right)^{-1} \left(1 - \frac{\alpha'_2}{p^s}\right)^{-1},
\]

where \(\zeta(s) \) is the Riemann zeta-function. Then we have

\[
(4.1) \quad \sum_{n=1}^{\infty} t(n^2)n^{-s} = \frac{L(\text{Sym}^2 \varphi, s)}{\zeta(2s)}.
\]

This gives

\[
(4.2) \quad t(n^2) = \sum_{d^2|n} \mu(d) t^{(2)} \left(\frac{n}{d^2} \right),
\]

where \(t^{(2)}(n) \) is the \(n \)th coefficient of the symmetric square \(L \)-function \(L(\text{Sym}^2 \varphi, s) \) with \(\text{Re} \, s > 1 \).

It follows from the Gelbart-Jacquet lift that \(L(\text{Sym}^2 \varphi, s) \) is an automorphic \(L \)-function of \(GL_3 \). Then from Theorem 1.1 with \(m = 3 \), we have

\[
(4.3) \quad \sum_{n \leq x} t^{(2)}(n) \ll x^{\frac{3}{2} + \varepsilon}.
\]

From (4.2) and (4.3), we have

\[
S(x) = \sum_{n \leq x} t(n^2) \ll x^{\frac{3}{2} + \varepsilon}.
\]

This completes the proof of Corollary 1.2.

Acknowledgements

I would like to thank Professor Jianya Liu and Professor K. Soundararajan for their encouragement. I am grateful to the referee of the first version of this paper and the referee of the present version for their valuable suggestions and detailed comments.
References

Department of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China

E-mail address: gslv@sdu.edu.cn