Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quadratic rational maps lacking period 2 orbits


Author: Rika Hagihara
Journal: Proc. Amer. Math. Soc. 137 (2009), 3077-3090
MSC (2000): Primary 37F45; Secondary 30D05, 37F10
DOI: https://doi.org/10.1090/S0002-9939-09-09852-9
Published electronically: March 18, 2009
MathSciNet review: 2506466
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study dynamical properties of a parameterized family of quadratic rational maps, all of whose members lack period 2 orbits. We classify regions in the parameter space of the family according to the behavior of marked critical points. We characterize the parameter space by comparing it with the Mandelbrot set.


References [Enhancements On Off] (What's this?)

  • 1. Baker, I.N. Fixpoints of polynomials and rational functions. J. London Math. Soc. 39 (1964), 615-622. MR 0169989 (30:230)
  • 2. Beardon, A.F. Iteration of Rational Functions. Springer-Verlag, 1991. MR 1128089 (92j:30026)
  • 3. Bergweiler, W. On the number of critical points in parabolic basins. Ergod. Th. $ \&$ Dynam. Sys. 22 (2002), 655-669. MR 1908548 (2003k:37059)
  • 4. Branner, B. The Mandelbrot set. In Chaos and Fractals, Proc. Sympos. Appl. Math. 39, pages 75-105. American Math. Soc., 1989. MR 1010237
  • 5. Buff, X., and Epstein, A. A parabolic Pommerenke-Levin-Yoccoz inequality. Fundamenta Mathematicae 172 (2002), 249-289. MR 1898687 (2003b:37067)
  • 6. Hagihara, R. Rational Maps Lacking Certain Periodic Orbits. PhD thesis, University of North Carolina at Chapel Hill, 2007.
  • 7. Hawkins, J. Lebesgue ergodic rational maps in parameter space. Int. J. Bifurcation and Chaos 13 (2003), no. 6, 1423-1447. MR 1992056 (2004e:37065)
  • 8. Keen, L. Julia sets of rational maps. In Complex Dynamical Systems: The Mathematics behind the Mandelbrot and Julia Sets, Proc. Sympos. Appl. Math. 49, pages 71-89. American Math. Soc., 1994. MR 1315534
  • 9. Kisaka, M. On some exceptional rational maps. Proc. Japan Acad., Ser. A 71 (1995), 35-38. MR 1326795 (96a:30029)
  • 10. Mañé, R., Sad, P., and Sullivan, D. On the dynamics of rational maps. Ann. Scient. École Norm. Sup., $ 4^{\text{e}}$ série 16 (1983), 193-217. MR 732343 (85j:58089)
  • 11. McMullen, C. Complex Dynamics and Renormalization. Annals of Math. Studies 135, Princeton Univ. Press, 1994. MR 1312365 (96b:58097)
  • 12. McMullen, C. The Mandelbrot set is universal. In The Mandelbrot Set, Theme and Variations, London Math. Soc. Lecture Note Series 274, pages 1-17. Cambridge University Press, 2000. MR 1765082 (2002f:37081)
  • 13. Milnor, J. Geometry and dynamics of quadratic rational maps. Experiment. Math. 2 (1993), no. 1, 37-83. MR 1246482 (96b:58094)
  • 14. Milnor, J. On rational maps with two critical points. Experiment. Math. 9 (2000), no. 4, 481-522. MR 1806289 (2001k:37074)
  • 15. Rees, M. Components of degree two hyperbolic rational maps. Invent. Math. 100 (1990), no. 2, 357-382. MR 1047139 (91b:58187)
  • 16. Yin, Y.-C. On the Julia sets of quadratic rational maps. Compl. Variab. 18 (1992), 141-147. MR 1157922 (93e:58160)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37F45, 30D05, 37F10

Retrieve articles in all journals with MSC (2000): 37F45, 30D05, 37F10


Additional Information

Rika Hagihara
Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
Email: r.hagihara@unsw.edu.au

DOI: https://doi.org/10.1090/S0002-9939-09-09852-9
Keywords: Complex dynamics, parabolic, critical points
Received by editor(s): October 23, 2008
Received by editor(s) in revised form: December 8, 2008
Published electronically: March 18, 2009
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society