Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Asymptotics for a gradient system with memory term
HTML articles powered by AMS MathViewer

by Alexandre Cabot PDF
Proc. Amer. Math. Soc. 137 (2009), 3013-3024 Request permission

Abstract:

Given a Hilbert space $H$ and a function $\Phi :H\to \mathbb {R}$ of class $\mathcal {C}^1$, we investigate the asymptotic behavior of the trajectories associated to the following dynamical system: \[ (\mathcal {S})\qquad \qquad \qquad \dot x(t) +\frac {1}{k(t)} \int _{t_0}^t h(s) \nabla \Phi (x(s)) ds=0, \qquad t\geq t_0,\qquad \qquad \quad \]where $h$, $k: [t_0,+\infty )\to \mathbb {R}_+^*$ are continuous maps. When $k(t) \sim \int _{t_0}^t h(s) ds$ as $t\to +\infty$, this equation can be interpreted as an averaged gradient system. We define a natural energy function $E$ associated to system $(\mathcal {S})$ and we give conditions which ensure that $E(t)$ decreases to $\inf \Phi$ as $t\to +\infty$. When $\Phi$ is convex and has a set of non-isolated minima, we show that the trajectories of $(\mathcal {S})$ cannot converge if the average process does not “privilege” the recent past. Special attention is devoted to the particular case $h(t)=t^\alpha$, $k(t)=t^\beta$, which is fully treated.
References
  • Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
  • Felipe Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38 (2000), no. 4, 1102–1119. MR 1760062, DOI 10.1137/S0363012998335802
  • H. Attouch, X. Goudou, and P. Redont, The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system, Commun. Contemp. Math. 2 (2000), no. 1, 1–34. MR 1753136, DOI 10.1142/S0219199700000025
  • Frank Bowman, Introduction to Bessel functions, Dover Publications, Inc., New York, 1958. MR 0097539
  • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973 (French). MR 0348562
  • Ronald E. Bruck Jr., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Functional Analysis 18 (1975), 15–26. MR 377609, DOI 10.1016/0022-1236(75)90027-0
  • A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in Trans. of the Amer. Math. Soc. http://arxiv.org/abs/0710.1107
  • A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Seventh Mississippi State-UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 17 (2009), 33-38.
  • A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving inertia and memory aspects, 14 pages, submitted.
  • Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
  • Alain Haraux, Systèmes dynamiques dissipatifs et applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 17, Masson, Paris, 1991 (French). MR 1084372
  • A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations 144 (1998), no. 2, 313–320. MR 1616968, DOI 10.1006/jdeq.1997.3393
  • S. Lojasiewicz, Ensembles semi-analytiques réels, notes I.H.E.S., 1965.
  • R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34G20, 34A12, 34D05
  • Retrieve articles in all journals with MSC (2000): 34G20, 34A12, 34D05
Additional Information
  • Alexandre Cabot
  • Affiliation: Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
  • Email: acabot@math.univ-montp2.fr
  • Received by editor(s): October 22, 2008
  • Published electronically: May 4, 2009
  • Communicated by: Walter Craig
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 137 (2009), 3013-3024
  • MSC (2000): Primary 34G20, 34A12, 34D05
  • DOI: https://doi.org/10.1090/S0002-9939-09-09910-9
  • MathSciNet review: 2506460