Asymptotics for a gradient system with memory term

Author:
Alexandre Cabot

Journal:
Proc. Amer. Math. Soc. **137** (2009), 3013-3024

MSC (2000):
Primary 34G20, 34A12, 34D05

DOI:
https://doi.org/10.1090/S0002-9939-09-09910-9

Published electronically:
May 4, 2009

MathSciNet review:
2506460

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a Hilbert space and a function of class , we investigate the asymptotic behavior of the trajectories associated to the following dynamical system:

**1.**M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1972. MR**0167642 (29:4914)****2.**F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces,*SIAM J. on Control and Optimization*, 38 (2000), no. 4, 1102-1119. MR**1760062 (2001e:34118)****3.**H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method. I. The continuous dynamical system,*Communications in Contemporary Mathematics*, 2 (2000), no. 1, 1-34. MR**1753136 (2001b:37025)****4.**F. Bowman, Introduction to Bessel Functions. Dover, New York, 1958. MR**0097539 (20:4007)****5.**H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes 5, North Holland, 1973. MR**0348562 (50:1060)****6.**R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space,*Journal of Functional Analysis*, 18 (1975), 15-26. MR**0377609 (51:13780)****7.**A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, accepted in*Trans. of the Amer. Math. Soc.*`http://arxiv.org/abs/0710.1107`**8.**A. Cabot, H. Engler, S. Gadat, Second order differential equations with asymptotically small dissipation and piecewise flat potentials, Seventh Mississippi State-UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 17 (2009), 33-38.**9.**A. Cabot, P. Frankel, Asymptotics for some proximal-like method involving inertia and memory aspects, 14 pages, submitted.**10.**J. K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988. MR**941371 (89g:58059)****11.**A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris, 1991. MR**1084372 (92b:35002)****12.**A. Haraux, M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities,*J. Differential Equations*, 144 (1998), no. 2, 313-320. MR**1616968 (99a:35182)****13.**S. Lojasiewicz, Ensembles semi-analytiques réels, notes I.H.E.S., 1965.**14.**R.T. Rockafellar,*Convex Analysis*. Princeton Univ. Press, Princeton, NJ, 1970. MR**0274683 (43:445)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34G20,
34A12,
34D05

Retrieve articles in all journals with MSC (2000): 34G20, 34A12, 34D05

Additional Information

**Alexandre Cabot**

Affiliation:
Département de Mathématiques, Université Montpellier II, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Email:
acabot@math.univ-montp2.fr

DOI:
https://doi.org/10.1090/S0002-9939-09-09910-9

Keywords:
Differential equation,
dissipative dynamical system,
averaged gradient system,
memory effect,
Bessel equation

Received by editor(s):
October 22, 2008

Published electronically:
May 4, 2009

Communicated by:
Walter Craig

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.