On the solvability of systems of bilinear equations in finite fields

Author:
Le Anh Vinh

Journal:
Proc. Amer. Math. Soc. **137** (2009), 2889-2898

MSC (2000):
Primary 11L40, 11T30; Secondary 11E39

DOI:
https://doi.org/10.1090/S0002-9939-09-09947-X

Published electronically:
May 4, 2009

MathSciNet review:
2506446

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given sets and a non-degenerate bilinear form in , we consider the system of bilinear equations

**1.**J. A. Cipra, T. Cochrane and C. Pinner,*Heilbronn's conjecture on Waring's number (mod )*, J. Number Theory**125**(2) (2007), 289-297. MR**2332590 (2008d:11116)****2.**D. Covert, D. Hart, A. Iosevich, and I. Uriarte-Tuero,*An analog of the Furstenberg-Katznelson-Weiss theorem on triangles in sets of positive density in finite field geometries*, preprint 2008, arXiv:0804.4894.**3.**K. Gyarmati and A. Sárközy,*Equations in finite fields with restricted solution sets, II (algebraic equations)*, Acta Math. Hungar.**119**(2008), 259-280. MR**2407038****4.**D. Hart,*Explorations of Geometric Combinatorics in Vector Spaces over Finite Fields*, Ph.D. Thesis, Missouri University.**5.**D. Hart and A. Iosevich,*Sums and products in finite fields: An integral geometric viewpoint*, Contemp. Math.**464**, Amer. Math. Soc., Providence, RI, 2008, pp. 129-135. MR**2440133****6.**D. Hart and A. Iosevich,*Ubiquity of simplices in subsets of vector spaces over finite fields*, Anal. Math.**34**(1) (2008), 29-38. MR**2379694 (2008m:05296)****7.**D. Hart, A. Iosevich, D. Koh and M. Rudnev,*Averages over hyperplanes, sum-product theory in finite fields, and the Erdős-Falconer distance conjecture*, to appear in Trans. Amer. Math. Soc., arXiv:0707.3473.**8.**D. Hart, A. Iosevich, D. Koh, S. Senger, and I. Uriarte-Tuero,*Distance graphs in vector spaces over finite fields, coloring, pseudo-randomness and arithmetic progressions*, preprint, 2008, arXiv:0804.3036.**9.**M. Krivelevich and B. Sudakov,*Pseudo-random graphs*, in More Sets, Graphs and Numbers, Bolyai Soc. Math. Studies 15, Springer, Berlin, 2006, 199-262. MR**2223394 (2007a:05130)****10.**A. Sárközy,*On products and shifted products of residues modulo ,*Integers**8**(2) (2008), A9. MR**2438294****11.**I. E. Shparlinski,*On the solvability of bilinear equations in finite fields*, Glasg. Math. J.**50**(2008), 523-529. MR**2451747****12.**L. A. Vinh,*On a Furstenberg-Katznelson-Weiss type theorem over finite fields*, to appear in Ann. Comb., arXiv:0807.2849**13.**L. A. Vinh,*On kaleidoscopic pseudo-randomness of finite Euclidean graphs*, preprint, 2008, arXiv:0807.2689.**14.**L. A. Vinh,*On -simplexes in -dimensional vector spaces over finite fields*, to appear in Proc. 21st FPSAC, 2009.**15.**L. A. Vinh,*Triangles in vector spaces over finite fields*, to appear in Online J. Anal. Comb. (2009).**16.**A. Weil,*Number of solutions of equations in finite fields*, Bull. Amer. Math. Soc.**55**(1949), 497-508. MR**0029393 (10:592e)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11L40,
11T30,
11E39

Retrieve articles in all journals with MSC (2000): 11L40, 11T30, 11E39

Additional Information

**Le Anh Vinh**

Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Email:
vinh@math.harvard.edu

DOI:
https://doi.org/10.1090/S0002-9939-09-09947-X

Keywords:
Bilinear equations,
finite fields

Received by editor(s):
December 1, 2008

Published electronically:
May 4, 2009

Communicated by:
Ken Ono

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.