Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal graphs in $ \mathbb{R}^{4}$ with bounded Jacobians


Authors: Th. Hasanis, A. Savas-Halilaj and Th. Vlachos
Journal: Proc. Amer. Math. Soc. 137 (2009), 3463-3471
MSC (2000): Primary 53C42
DOI: https://doi.org/10.1090/S0002-9939-09-09901-8
Published electronically: May 8, 2009
MathSciNet review: 2515415
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a Bernstein type result for entire two dimensional minimal graphs in $ \mathbb{R}^{4}$, which extends a previous result due to L. Ni. Moreover, we provide a characterization for complex analytic curves.


References [Enhancements On Off] (What's this?)

  • 1. K. Ecker and G. Huisken, A Bernstein result for minimal graphs of controlled growth, J. Differential Geom. 31 $ \left( 1990\right) $, 397-400. MR 1037408 (91a:53010)
  • 2. L.P. Eisenhart, Minimal surfaces in Euclidean four space, Amer. J. Math. 34 $ \left( 1912\right) $, 215-236. MR 1506152
  • 3. D. Fischer-Colbrie, Some rigidity theorems for minimal submanifolds of the sphere, Acta Math. 145 $ \left( 1980\right) $, 29-46. MR 558091 (82b:53078)
  • 4. K. Jörgens, Über die Lösungen der Differentialgleichung $ rt-s^{2}=1$, Math. Ann. 127 $ \left( 1954\right) $, 130-134. MR 0062326 (15:961e)
  • 5. J. Jost and Y.L. Xin, Bernstein type theorems for higher codimension, Calc. Var. Partial Differential Equations 9 $ \left( 1999\right) $, 277-296. MR 1731468 (2001e:53010)
  • 6. L. Ni, A Bernstein type theorem for minimal volume preserving maps, Proc. Amer. Math. Soc. 130 $ \left( 2002\right) $, 1207-1210. MR 1873798 (2002i:53078)
  • 7. R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969. MR 0256278 (41:934)
  • 8. R. Schoen, The role of harmonic mappings in rigidity and deformation problems, Complex Geometry (Osaka, 1990), 179-200, Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993. MR 1201611 (94g:58055)
  • 9. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. $ \left( 2\right) $ 88 $ \left( 1968\right) $, 62-105. MR 0233295 (38:1617)
  • 10. M.T. Wang, On graphic Bernstein type results in higher codimension, Trans. Amer. Math. Soc. 355 $ \left( 2003\right) $, 265-271. MR 1928088 (2003g:58020)
  • 11. J.G. Wolfson, Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation, J. Differential Geom. 46 $ \left( 1997\right) $, 335-373. MR 1484047 (99e:58045)
  • 12. Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 $ \left( 2002\right) $, 117-125. MR 1930884 (2003k:53060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C42

Retrieve articles in all journals with MSC (2000): 53C42


Additional Information

Th. Hasanis
Affiliation: Department of Mathematics, University of Ioannina, 45110, Ioannina, Greece
Email: thasanis@uoi.gr

A. Savas-Halilaj
Affiliation: Department of Mathematics, University of Ioannina, 45110, Ioannina, Greece
Email: ansavas@cc.uoi.gr

Th. Vlachos
Affiliation: Department of Mathematics, University of Ioannina, 45110, Ioannina, Greece
Email: tvlachos@uoi.gr

DOI: https://doi.org/10.1090/S0002-9939-09-09901-8
Keywords: Minimal surface, Bernstein type theorem, Jacobian
Received by editor(s): July 7, 2008
Received by editor(s) in revised form: January 27, 2009
Published electronically: May 8, 2009
Additional Notes: The second author was supported financially by the Foundation for Education and European Culture.
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society