Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Random $ p$-adic Riesz products: Continuity, singularity, and dimension

Authors: Narn-Rueih Shieh and Xiong-ying Zhang
Journal: Proc. Amer. Math. Soc. 137 (2009), 3477-3486
MSC (2000): Primary 60G57, 28A80, 11S80
Published electronically: June 3, 2009
MathSciNet review: 2515417
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study precise conditions for mutual absolute continuity and mutual singularity of two random $ p$-adic Riesz products, defined respectively by two sequences of coefficients $ a_k, b_k$. Our conditions and assertions are specific to the $ p$-adic case. We also calculate explicitly the Hausdorff dimension, and in case the defining coefficients are constant, we have an integral representation of the dimension formula with a rapid convergence rate $ p^{-k}$.

References [Enhancements On Off] (What's this?)

  • 1. Brown, G. and Moran, W. (1974). On orthogonality of Riesz products. Proc. Camb. Phil. Soc. 76, 173-181. MR 0350319 (50:2812)
  • 2. Falconer, K. (2003). Fractal geometry. Mathematical foundations and applications. Second edition. John Wiley & Sons, Inc., Hoboken, NJ. MR 2118797 (2006b:28001)
  • 3. Fan, A. H. (1991). Équivalence et orthogonalité des mesures aléatoires engendrées par martingales positives homogènes. Studia Math. 98, 249-266. MR 1115195 (93d:60082)
  • 4. Fan, A. H. (1993). Quelques propriétés des produits de Riesz. Bull. Sci. Math. 117, 421-439. MR 1245805 (95f:28002)
  • 5. Fan, A. H. (1994). Sur les dimensions de mesures. Studia Math. 111, 1-17. MR 1292850 (95m:28003)
  • 6. Fan, A. H. and Zhang, X. Y. (2009) Some properties of Riesz products on the ring of $ p$-adic integers. J. Fourier Anal. Appl. (to appear).
  • 7. Kahane, J. P. (1987). Positive martingales and random measures. Chin. Ann. Math. 8B (1), 1-12. MR 886744 (88j:60098)
  • 8. Kakutani, S. (1948). On equivalence of infinite product measures. Ann. of Math. (2) 49, 214-224. MR 0023331 (9:340e)
  • 9. Kilmer, S. J. and Saeki, S. (1988). On Riesz product measures: Mutual absolute continuity and singularity. Ann. Inst. Fourier (Grenoble) 38, 63-93. MR 949011 (90a:42006)
  • 10. Koblitz, N. (1984). $ p$-adic numbers, $ p$-adic analysis, and zeta functions. Grad. Texts in Math., 58. Springer-Verlag. MR 754003 (86c:11086)
  • 11. Mattila, P. (1995). Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press. MR 1333890 (96h:28006)
  • 12. Parreau, F. (1990). Ergodicité et pureté des produits de Riesz. Ann. Inst. Fourier (Grenoble) 40, 391-405. MR 1070833 (91g:42009)
  • 13. Peyrière, J. (1975). Étude de quelques propriétés des produits de Riesz. Ann. Inst. Fourier (Grenoble) 25, 127-169. MR 0404973 (53:8771)
  • 14. Schikhof, W. H. (1984). Ultrametric calculus. Cambridge University Press. MR 791759 (86j:11104)
  • 15. Taibleson, M. H. (1975). Fourier analysis on local fields. Mathematical Notes, Princeton University Press. MR 0487295 (58:6943)
  • 16. Vladimirov, V. S., Volovich, I. V. and Zelenov, E. I. (1994). $ p$-adic analysis and mathematical physics. World Scientific. MR 1288093 (95k:11155)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60G57, 28A80, 11S80

Retrieve articles in all journals with MSC (2000): 60G57, 28A80, 11S80

Additional Information

Narn-Rueih Shieh
Affiliation: Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

Xiong-ying Zhang
Affiliation: Department of Mathematics, South China University of Technology, 510640 Guangzhou, People’s Republic of China

Keywords: Random $p$-adic Riesz products, mutual absolute continuity, mutual singularity, Hausdorff dimension
Received by editor(s): June 9, 2008
Published electronically: June 3, 2009
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society