On the clique number of the generating graph of a finite group

Authors:
Andrea Lucchini and Attila Maróti

Journal:
Proc. Amer. Math. Soc. **137** (2009), 3207-3217

MSC (2000):
Primary 05C25, 20D10, 20P05

Published electronically:
June 5, 2009

MathSciNet review:
2515391

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The generating graph of a finite group is the graph defined on the elements of with an edge connecting two distinct vertices if and only if they generate . The maximum size of a complete subgraph in is denoted by . We prove that if is a non-cyclic finite group of Fitting height at most that can be generated by elements, then , where is the size of a smallest chief factor of which has more than one complement. We also show that if is a non-abelian finite simple group and is the largest direct power of that can be generated by elements, then , where denotes the minimal index of a proper subgroup in .

**1.**A. Abdollahi and S. M. Jafarian Amiri,*Minimal coverings of completely reducible groups*, Publ. Math. Debrecen**72**(2008), no. 1-2, 167–172. MR**2376867****2.**M. Aschbacher and R. Guralnick,*Some applications of the first cohomology group*, J. Algebra**90**(1984), no. 2, 446–460. MR**760022**, 10.1016/0021-8693(84)90183-2**3.**Simon R. Blackburn,*Sets of permutations that generate the symmetric group pairwise*, J. Combin. Theory Ser. A**113**(2006), no. 7, 1572–1581. MR**2259081**, 10.1016/j.jcta.2006.01.001**4.**Peter J. Cameron and C. Y. Ku,*Intersecting families of permutations*, European J. Combin.**24**(2003), no. 7, 881–890. MR**2009400**, 10.1016/S0195-6698(03)00078-7**5.**E. Detomi and A. Lucchini,*Crowns and factorization of the probabilistic zeta function of a finite group*, J. Algebra**265**(2003), no. 2, 651–668. MR**1987022**, 10.1016/S0021-8693(03)00275-8**6.**R. H. Dye,*Interrelations of symplectic and orthogonal groups in characteristic two*, J. Algebra**59**(1979), no. 1, 202–221. MR**541675**, 10.1016/0021-8693(79)90157-1**7.**Wolfgang Gaschütz,*Praefrattinigruppen*, Arch. Math. (Basel)**13**(1962), 418–426 (German). MR**0146262****8.**Robert M. Guralnick and William M. Kantor,*Probabilistic generation of finite simple groups*, J. Algebra**234**(2000), no. 2, 743–792. Special issue in honor of Helmut Wielandt. MR**1800754**, 10.1006/jabr.2000.8357**9.**Martin W. Liebeck and Aner Shalev,*Simple groups, probabilistic methods, and a conjecture of Kantor and Lubotzky*, J. Algebra**184**(1996), no. 1, 31–57. MR**1402569**, 10.1006/jabr.1996.0248**10.**Martin W. Liebeck and Aner Shalev,*Classical groups, probabilistic methods, and the (2,3)-generation problem*, Ann. of Math. (2)**144**(1996), no. 1, 77–125. MR**1405944**, 10.2307/2118584**11.**Lucchini, A.; Maróti, A. On finite simple groups and Kneser graphs,*J. Algebraic Combin.*, to appear.**12.**Attila Maróti,*Covering the symmetric groups with proper subgroups*, J. Combin. Theory Ser. A**110**(2005), no. 1, 97–111. MR**2128968**, 10.1016/j.jcta.2004.10.003**13.**Derek J. S. Robinson,*A course in the theory of groups*, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1993. MR**1261639****14.**M. J. Tomkinson,*Groups as the union of proper subgroups*, Math. Scand.**81**(1997), no. 2, 191–198. MR**1613772**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
05C25,
20D10,
20P05

Retrieve articles in all journals with MSC (2000): 05C25, 20D10, 20P05

Additional Information

**Andrea Lucchini**

Affiliation:
Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Email:
lucchini@math.unipd.it

**Attila Maróti**

Affiliation:
Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13-15, H-1053, Budapest, Hungary

Email:
maroti@renyi.hu

DOI:
http://dx.doi.org/10.1090/S0002-9939-09-09992-4

Received by editor(s):
July 22, 2008

Published electronically:
June 5, 2009

Additional Notes:
The research of the second author was supported by OTKA NK72523, OTKA T049841, NSF Grant DMS 0140578, and by a fellowship of the Mathematical Sciences Research Institute.

Communicated by:
Jonathan I. Hall

Article copyright:
© Copyright 2009
American Mathematical Society