Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the weaker forms of the specification property and their applications


Author: Kenichiro Yamamoto
Journal: Proc. Amer. Math. Soc. 137 (2009), 3807-3814
MSC (2000): Primary 37B40; Secondary 60F10
DOI: https://doi.org/10.1090/S0002-9939-09-09937-7
Published electronically: June 10, 2009
MathSciNet review: 2529890
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show the following two results, which are derived from the weaker forms of the specification property: Firstly, if an automorphism of a compact metric abelian group with finite topological entropy is ergodic under the Haar measure, then it satisfies the level 2 large deviation principle. Secondly, the topological pressure formula for periodic orbits is given under the expansiveness and the almost product property.


References [Enhancements On Off] (What's this?)

  • 1. N. Aoki, Zero-dimensional automorphisms with specification, Monatsh. Math., 95, 1-17 (1983). MR 697344 (84f:58094)
  • 2. N. Aoki, M. Dateyama and M. Komuro, Solenoidal automorphisms with specification, Monatsh. Math., 95, 189-198 (1981). MR 653100 (83m:28020)
  • 3. V. Baladi, Positive Transfer Operators and Decay of Correlations, Adv. Ser. Nonlinear Dynam., vol. 16. World Scientific, River Edge, NJ (2000). MR 1793194 (2001k:37035)
  • 4. R. Bowen, Some systems with unique equilibrium state, Math. Systems Theory, 8, 193-202 (1974). MR 0399413 (53:3257)
  • 5. J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349, 2737-2754 (1997). MR 1407484 (97i:58043)
  • 6. Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms, Hiroshima Math. J., 33, 189-195 (2003). MR 1997693 (2004g:37055)
  • 7. M. Dateyama, The almost weak specification property for ergodic group automorphisms of abelian groups, J. Math. Soc. Japan, 42, 341-351 (1990). MR 1041229 (91b:28014)
  • 8. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., 527. Springer, Berlin-Heidelberg-New York (1978). MR 0457675 (56:15879)
  • 9. R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Grundlehren der Mathematischen Wissenschaften, 271, Springer-Verlag, New York, 1985. MR 793553 (87d:82008)
  • 10. K. Gelfert and C. Wolf, Topological pressure via saddle points, Trans. Amer. Math. Soc., 360, 545-561 (2008). MR 2342015 (2008i:37059)
  • 11. L. F. He, H. Li and W. X. Sun, Invariant of topological pressure under some semi-conjugates, Appl. Math. J. Chinese Univ. Ser. B, 12, no. 3, 255-262 (1997). MR 1482923 (98m:58081)
  • 12. D. Lind, Ergodic group automorphisms and specification, Ergodic Theory. Proc. Oberwolfach, Lecture Notes in Math., 729, 93-104. Springer, Berlin-Heidelberg-New York (1979). MR 550414 (80j:28024)
  • 13. B. Marcus, A note on periodic points for ergodic toral automorphisms, Monatsh. Math., 89, 121-129 (1980). MR 572888 (81f:28016)
  • 14. M. Misiurewicz, Topological conditional entropy, Studia Math., 55, no. 2, 175-200 (1976). MR 0415587 (54:3672)
  • 15. C.-E. Pfister and W.G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $ \beta$-shifts, Nonlinearity, 18, 237-261 (2005). MR 2109476 (2005h:37015)
  • 16. C.-E. Pfister, W.G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27, 929-956 (2007). MR 2322186 (2008f:37036)
  • 17. J. Schmeling, Symbolic dynamics for $ \beta$-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17, 675-694 (1997). MR 1452189 (98c:11080)
  • 18. P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math., 79, Springer, Berlin (2000). MR 648108 (84e:28017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37B40, 60F10

Retrieve articles in all journals with MSC (2000): 37B40, 60F10


Additional Information

Kenichiro Yamamoto
Affiliation: Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
Email: yamamoto.k.ak@m.titech.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-09-09937-7
Keywords: Specification, large deviation, topological entropy periodic orbit
Received by editor(s): December 25, 2008
Received by editor(s) in revised form: February 23, 2009
Published electronically: June 10, 2009
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society