A stably elementary homotopy

Author:
Ravi A. Rao

Journal:
Proc. Amer. Math. Soc. **137** (2009), 3637-3645

MSC (2000):
Primary 13C10, 19D45, 19G12, 55Q55

DOI:
https://doi.org/10.1090/S0002-9939-09-09949-3

Published electronically:
June 16, 2009

MathSciNet review:
2529870

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If is an affine algebra of dimension over a perfect C field and is a stably elementary matrix, we show that there is a stably elementary matrix with and .

**1.**A. GARGE, R.A. RAO, A nice group structure on the orbit space of unimodular rows, -theory**38**, 113-133, 2008. MR**2366558****2.**S. JOSE, R.A. RAO, A structure theorem for the elementary unimodular vector group, Trans. Amer. Math. Soc.**358**, no. 7, 3097-3112, 2006. MR**2216260 (2007a:20047)****3.**W. VAN DER KALLEN, A group structure on certain orbit sets of unimodular rows, Journal of Algebra**82**, 363-397, 1983. MR**704762 (85b:13014)****4.**H. LINDEL, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math.**65**, no. 2, 319-323, 1981-82. MR**641133 (83g:13009)****5.**N. MOHAN KUMAR, M.P. MURTHY, Algebraic cycles and vector bundles over affine three-folds, Annals of Math. (2)**116**, 579-591, 1982. MR**678482 (84d:14006)****6.**D. QUILLEN, Projective modules over polynomial rings, Invent. Math.**36**, 167-171, 1976. MR**0427303 (55:337)****7.**R.A. RAO, An elementary transformation of a special unimodular vector to its top coefficient vector, Proc. Amer. Math. Soc.**93**, no. 1, 21-24, 1985. MR**766519 (86a:13011)****8.**R.A. RAO, W. VAN DER KALLEN, Improved stability for SK and WMS of a non-singular affine algebra. -theory (Strasbourg, 1992). Astérisque**226**, 411-420, 1994. MR**1317126 (96e:19001)****9.**M. ROITMAN, On unimodular rows, Proc. Amer. Math. Soc.**95**, no. 2, 184-188, 1985. MR**801320 (87f:13012)****10.**M. ROITMAN, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc.**97**, no. 4, 585-589, 1986. MR**845969 (87f:13007)****11.**J-P. SERRE,*Cohomologie Galoisienne*, Lecture Notes in Math.**5**, Springer, Berlin-New York, 1973. MR**0404227 (53:8030)****12.**A.A. SUSLIN, Stably free modules (Russian), Mat. Sb. (N.S.)**102**(144), no. 4, 537-550, 1977. MR**0441949 (56:340)****13.**A.A. SUSLIN, On the structure of the special linear group over polynomial rings, Math. USSR Izv.**11**, 221-238, 1977.**14.**A.A. SUSLIN, Cancellation for affine varieties (Russian), Modules and algebraic groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**114**, 187-195, 1982. MR**669571 (84c:14012)****15.**A.A. SUSLIN, Mennicke symbols and their applications in the -theory of fields. Algebraic -theory, Part I (Oberwolfach, 1980), 334-356, Lecture Notes in Math.**966**, Springer, Berlin-New York, 1982. MR**689382 (84f:18023)****16.**R.G. SWAN, Some stably free modules which are not self dual. See unpublished papers on homepage of R.G. Swan at http://www.math.uchicago.edu/.**17.**R.G. SWAN, A cancellation theorem for projective modules in the metastable range, Invent. Math.**27**, 23-43, 1974. MR**0376681 (51:12856)****18.**L.N. VASERSTEIN, A.A. SUSLIN, Serre's problem on projective modules over polynomial rings, and algebraic -theory (Russian), Izv. Akad. Nauk SSSR Ser. Mat.**40**, no. 5, 993-1054, 1976. MR**0447245 (56:5560)****19.**T. VORST, The general linear group of polynomial rings over regular rings, Comm. Algebra**9**, no. 5, 499-509, 1981. MR**606650 (82c:13008)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13C10,
19D45,
19G12,
55Q55

Retrieve articles in all journals with MSC (2000): 13C10, 19D45, 19G12, 55Q55

Additional Information

**Ravi A. Rao**

Affiliation:
Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Navy Nagar, Mumbai 400 005, India

Email:
ravi@math.tifr.res.in

DOI:
https://doi.org/10.1090/S0002-9939-09-09949-3

Keywords:
Unimodular row,
stably elementary matrices,
homotopy

Received by editor(s):
November 12, 2007

Received by editor(s) in revised form:
December 5, 2007, and February 27, 2009

Published electronically:
June 16, 2009

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2009
American Mathematical Society