Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A fundamental dichotomy for Julia sets of a family of elliptic functions


Author: L. Koss
Journal: Proc. Amer. Math. Soc. 137 (2009), 3927-3938
MSC (2000): Primary 54H20, 37F10; Secondary 37F20
DOI: https://doi.org/10.1090/S0002-9939-09-09967-5
Published electronically: June 29, 2009
MathSciNet review: 2529903
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate topological properties of Julia sets of iterated elliptic functions of the form $ g = 1/\wp$, where $ \wp$ is the Weierstrass elliptic function, on triangular lattices. These functions can be parametrized by $ \mathbb{C} - \{0\}$, and they all have a superattracting fixed point at zero and three other distinct critical values. We prove that the Julia set of $ g$ is either Cantor or connected, and we obtain examples of each type.


References [Enhancements On Off] (What's this?)

  • 1. I. N. Baker, J. Kotus and L. Yinian, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651-656. MR 1189754 (94c:58166)
  • 2. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151-188. MR 1216719 (94c:30033)
  • 3. B. Branner and J. H. Hubbard, The iteration of cubic polynomials. II. Patterns and para- patterns, Acta Math. 169 (1992), no. 3-4, 229-325. MR 1194004 (94d:30044)
  • 4. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144 (1965). MR 0194595 (33:2805)
  • 5. R. L. Devaney and L. Keen, Dynamics of tangent, in Dynamical systems (College Park, MD, 1986-87), 105-111, Lecture Notes in Math., 1342, Springer, Berlin. MR 970550 (90e:58093)
  • 6. P. Du Val, Elliptic functions and elliptic curves, Cambridge Univ. Press, London, 1973. MR 0379512 (52:417)
  • 7. P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314. MR 1504787, MR 1504792
  • 8. J. Goldsmith and L. Koss, Dynamical properties of the derivative of the Weierstrass elliptic function, Involve. To appear.
  • 9. G. Julia, Mémoire sur l'iteration des applications fonctionnelles, J. Math. Pures et Appl. 8 (1918), 47-245.
  • 10. J. Hawkins, Smooth Julia sets of elliptic functions for square rhombic lattices, Topology Proc. 30 (2006), no. 1, 265-278. MR 2280672 (2007j:37076)
  • 11. J. Hawkins, A family of elliptic functions with Julia set the whole sphere (2008), J. Difference Equ. Appl. To appear.
  • 12. J. Hawkins and L. Koss, Ergodic properties and Julia sets of Weierstrass elliptic functions, Monatsh. Math. 137 (2002), no. 4, 273-300. MR 1947915 (2003j:37066)
  • 13. J. Hawkins and L. Koss, Parametrized dynamics of the Weierstrass elliptic function, Conform. Geom. Dyn. 8 (2004), 1-35 (electronic). MR 2060376 (2005b:37089)
  • 14. J. Hawkins and L. Koss, Connectivity properties of Julia sets of Weierstrass elliptic functions, Topology Appl. 152 (2005), no. 1-2, 107-137. MR 2160809 (2007b:37098)
  • 15. J. Hawkins, L. Koss and J. Kotus, Elliptic functions with critical orbits approaching infinity (2008), J. Difference Equ. Appl. To appear.
  • 16. J. M. Hawkins and D. M. Look, Locally Sierpinski Julia sets of Weierstrass elliptic $ \wp$ functions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 5, 1505-1520. MR 2254870 (2007h:37068)
  • 17. G. A. Jones and D. Singerman, Complex functions, Cambridge Univ. Press, Cambridge, 1987. MR 890746 (89b:30001)
  • 18. L. Keen and J. Kotus, Dynamics of the family $ \lambda\tan z$, Conform. Geom. Dyn. 1 (1997), 28-57 (electronic). MR 1463839 (98h:58159)
  • 19. L. Koss, Cantor Julia sets in a family of even elliptic functions (2008), J. Difference Equ. Appl. To appear.
  • 20. J. Milnor, Dynamics in one complex variable, Vieweg, Braunschweig, 1999. MR 1721240 (2002i:37057)
  • 21. J. Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37-83. MR 1246482 (96b:58094)
  • 22. P. J. Rippon and G. M. Stallard, Iteration of a class of hyperbolic meromorphic functions, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3251-3258. MR 1610785 (2000b:30033)
  • 23. Y. C. Yin, On the Julia sets of quadratic rational maps, Complex Variables Theory Appl. 18 (1992), no. 3-4, 141-147. MR 1157922 (93e:58160)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54H20, 37F10, 37F20

Retrieve articles in all journals with MSC (2000): 54H20, 37F10, 37F20


Additional Information

L. Koss
Affiliation: Department of Mathematics and Computer Science, Dickinson College, P.O. Box 1773, Carlisle, Pennsylvania 17013
Email: koss@dickinson.edu

DOI: https://doi.org/10.1090/S0002-9939-09-09967-5
Keywords: Complex dynamics, meromorphic functions, Julia sets
Received by editor(s): January 21, 2009
Received by editor(s) in revised form: March 3, 2009
Published electronically: June 29, 2009
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society