Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Estimates for unimodular Fourier multipliers on modulation spaces


Authors: Akihiko Miyachi, Fabio Nicola, Silvia Rivetti, Anita Tabacco and Naohito Tomita
Journal: Proc. Amer. Math. Soc. 137 (2009), 3869-3883
MSC (2000): Primary 42B15, 42B35, 42C15
DOI: https://doi.org/10.1090/S0002-9939-09-09968-7
Published electronically: June 22, 2009
MathSciNet review: 2529896
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the action on modulation spaces of Fourier multipliers with symbols $ e^{i\mu(\xi)}$, for real-valued functions $ \mu$ having unbounded second derivatives. In a simplified form our result reads as follows: if $ \mu$ satisfies the usual symbol estimates of order $ \alpha\geq2$, or if $ \mu$ is a positively homogeneous function of degree $ \alpha$, then the corresponding Fourier multiplier is bounded as an operator between the weighted modulation spaces $ M^{p,q}_s$ and $ M^{p,q}$, for all $ 1\leq p,q\leq\infty$ and $ s\geq (\alpha-2)n\vert{1/p}-1/2\vert$. Here $ s$ represents the loss of derivatives. The above threshold is shown to be sharp for any homogeneous function $ \mu$ whose Hessian matrix is non-degenerate at some point.


References [Enhancements On Off] (What's this?)

  • 1. Á. Bényi, K. Gröchenig, K. Okoudjou and L.G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), 366-384. MR 2321047 (2008c:42005)
  • 2. A. Bényi and K.A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces. Preprint, April 2007. Available at arXiv:0704.0833v1.
  • 3. F. Concetti and J. Toft, Trace ideals for Fourier integral operators with non-smooth symbols. In Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, 255-264, Fields Inst. Commun., 52, Amer. Math. Soc., Providence, RI, 2007. MR 2385329
  • 4. F. Concetti, G. Garello and J. Toft, Trace ideals for Fourier integral operators with non-smooth symbols II. Preprint, 2007. Available at arXiv:0710.3834.
  • 5. E. Cordero and F. Nicola,
    Some new Strichartz estimates for the Schrödinger equation, J. Differential Equations 245 (2008), 1945-1974. MR 2433493
  • 6. E. Cordero and F. Nicola, Boundedness of Fourier integral operators on modulation spaces. Preprint, 2008. Available at arXiv:0807.2380.
  • 7. E. Cordero, F. Nicola and L. Rodino,
    Time-frequency analysis of Fourier integral operators.
    Commun. Pure Appl. Anal., to appear. Available at arXiv:0710.3652v1.
  • 8. E. Cordero, F. Nicola and L. Rodino,
    Boundedness of Fourier integral operators on $ \mathcal{F} L^p$ spaces, Trans. Amer. Math. Soc., to appear. Available at ArXiv:0801.1444.
  • 9. Y. Domar, On the spectral synthesis problem for $ (n-1)$-dimensional subsets of $ \mathbb{R}^n$, $ n \ge 2$, Ark. Mat. 9 (1971), 23-37. MR 0324319 (48:2671)
  • 10. H.G. Feichtinger,
    Modulation spaces on locally compact abelian groups.
    Technical Report, University of Vienna, 1983, and also in
    Wavelets and Their Applications, M. Krishna, R. Radha, S. Thangavelu, editors,
    99-140, Allied Publishers, New Delhi, 2003.
  • 11. H.G. Feichtinger, Modulation spaces: looking back and ahead, Sampl. Theory Signal Image Process. 5 (2006), 109-140. MR 2233968 (2007j:43003)
  • 12. H.G. Feichtinger and K. Gröchenig,
    Banach spaces related to integrable group representations and their atomic decompositions. II,
    Monatsh. Math. 108 (1989), 129-148. MR 1026614 (91g:43012)
  • 13. H.G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21 (2006), 349-359. MR 2274842 (2007h:42018)
  • 14. K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser, Boston, MA, 2001. MR 1843717 (2002h:42001)
  • 15. K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439-457. MR 1702232 (2001a:47051)
  • 16. L. Hörmander, Estimates for translation invariant operators in $ L^p$-spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • 17. L. Hörmander,
    The Analysis of Linear Partial Differential Operators, Vol. IV. Springer-Verlag, Berlin, 1985.
  • 18. L. Li, Some remarks on a multiplier theorem of Hörmander, Math. Appl. (Wuhan) 15 (2002), 152-154. MR 1960194 (2003k:42028)
  • 19. W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. MR 0155146 (27:5086)
  • 20. T. Mizuhara, On Fourier multipliers of homogeneous Besov spaces, Math. Nachr. 133 (1987), 155-161. MR 912425 (89f:46075)
  • 21. S. Rivetti, Fourier multipliers on modulation spaces. Ph.D. Thesis, Politecnico di Torino, in preparation.
  • 22. J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185-192. MR 1266757 (95b:47065)
  • 23. E. M. Stein,
    Harmonic Analysis.
    Princeton University Press, Princeton, 1993. MR 1232192 (95c:42002)
  • 24. M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), 79-106. MR 2329683 (2009a:46064)
  • 25. J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II, Ann. Global Anal. Geom. 26 (2004), 73-106. MR 2054576 (2005b:47107)
  • 26. H. Triebel,
    Modulation spaces on the Euclidean $ n$-spaces,
    Z. Anal. Anwendungen 2 (1983), 443-457. MR 725159 (85i:46040)
  • 27. B. Wang and C. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations 239 (2007), 213-250. MR 2341554 (2008e:35190)
  • 28. B. Wang, L. Zhao and B. Guo, Isometric decomposition operators, function spaces $ E_{p,q}^{\lambda}$ and applications to nonlinear equations, J. Funct. Anal. 233 (2006), 1-39. MR 2204673 (2007b:35187)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B15, 42B35, 42C15

Retrieve articles in all journals with MSC (2000): 42B15, 42B35, 42C15


Additional Information

Akihiko Miyachi
Affiliation: Department of Mathematics, Tokyo Woman’s Christian University, Zempukuji, Suginami-ku, Tokyo 167-8585, Japan
Email: miyachi@lab.twcu.ac.jp

Fabio Nicola
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: fabio.nicola@polito.it

Silvia Rivetti
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: silvia.rivetti@polito.it

Anita Tabacco
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: anita.tabacco@polito.it

Naohito Tomita
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: tomita@math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-09-09968-7
Keywords: Fourier multipliers, modulation spaces, short-time Fourier transform, Schr\"odinger operators
Received by editor(s): October 30, 2008
Received by editor(s) in revised form: March 11, 2009
Published electronically: June 22, 2009
Additional Notes: The second, third, and fourth authors were partially supported by the Progetto MIUR Cofinanziato 2007 “Analisi Armonica”
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society