Almost universal ternary sums of triangular numbers
Authors:
Wai Kiu Chan and ByeongKweon Oh
Journal:
Proc. Amer. Math. Soc. 137 (2009), 35533562
MSC (2000):
Primary 11E12, 11E20
Published electronically:
June 25, 2009
MathSciNet review:
2529860
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: For any integer , let denote the triangular number . In this paper we give a complete characterization of all the triples of positive integers for which the ternary sums represent all but finitely many positive integers, which resolves a conjecture of Kane and Sun.
 1.
Leonard
Eugene Dickson, History of the theory of numbers. Vol. II:
Diophantine analysis, Chelsea Publishing Co., New York, 1966. MR 0245500
(39 #6807b)
 2.
William
Duke and Rainer
SchulzePillot, Representation of integers by positive ternary
quadratic forms and equidistribution of lattice points on ellipsoids,
Invent. Math. 99 (1990), no. 1, 49–57. MR 1029390
(90m:11051), http://dx.doi.org/10.1007/BF01234411
 3.
A.
G. Earnest, Representation of spinor exceptional integers by
ternary quadratic forms, Nagoya Math. J. 93 (1984),
27–38. MR
738916 (85j:11042)
 4.
A.
G. Earnest and J.
S. Hsia, Spinor norms of local integral rotations. II, Pacific
J. Math. 61 (1975), no. 1, 71–86. MR 0404142
(53 #7946)
 5.
A.
G. Earnest and J.
S. Hsia, Spinor genera under field extensions. II. 2 unramified in
the bottom field, Amer. J. Math. 100 (1978),
no. 3, 523–538. MR 0491488
(58 #10731a)
 6.
A.
G. Earnest, J.
S. Hsia, and D.
C. Hung, Primitive representations by spinor genera of ternary
quadratic forms, J. London Math. Soc. (2) 50 (1994),
no. 2, 222–230. MR 1291733
(95k:11044), http://dx.doi.org/10.1112/jlms/50.2.222
 7.
Song
Guo, Hao
Pan, and ZhiWei
Sun, Mixed sums of squares and triangular numbers. II,
Integers 7 (2007), A56, 5. MR 2373118
(2008m:11078)
 8.
J.
S. Hsia, Spinor norms of local integral rotations. I, Pacific
J. Math. 57 (1975), no. 1, 199–206. MR 0374029
(51 #10229)
 9.
B. Kane, On two conjectures about mixed sums of squares and triangular numbers, J. Combinatorics and Number Theory 1 (2009), no. 1, 7790.
 10.
B. Kane and Z.W. Sun, On almost universal mixed sums of squares and triangular numbers, preprint arXiv:0808.2761.
 11.
O.
T. O’Meara, Introduction to quadratic forms, Die
Grundlehren der mathematischen Wissenschaften, Bd. 117, Academic Press,
Inc., Publishers, New York; SpringerVerlag,
BerlinGöttingenHeidelberg, 1963. MR 0152507
(27 #2485)
 12.
B.K. Oh and Z.W. Sun, Mixed sums of squares and triangular numbers. III, J. Number Theory 129 (2009), 964969.
 13.
ZhiWei
Sun, Mixed sums of squares and triangular numbers, Acta Arith.
127 (2007), no. 2, 103–113. MR 2289977
(2007m:11052), http://dx.doi.org/10.4064/aa12721
 14.
Z.W. Sun, A message to number theory mailing list, April 27, 2008. http://listserv.nodak.edu/cgibin/ wa.exe?A2=ind0804&L=nmbrthry&T=0&P=1670.
 15.
André
Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA,
1984. An approach through history; From Hammurapi to Legendre. MR 734177
(85c:01004)
 1.
 L.E. Dickson, History of the Theory of Numbers, Vol. II, AMS Chelsea Publ., 1999.MR 0245500 (39:6807b)
 2.
 W. Duke, and R. SchulzePillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99 (1990), no. 1, 4957. MR 1029390 (90m:11051)
 3.
 A.G. Earnest, Representation of spinor exceptional integers by ternary quadratic forms, Nagoya Math. J. 93 (1984), 2738. MR 738916 (85j:11042)
 4.
 A.G. Earnest and J.S. Hsia, Spinor norms of local integral rotations. II, Pacific J. Math. 61 (1975), no. 1, 7186. MR 0404142 (53:7946)
 5.
 A.G. Earnest and J.S. Hsia, Spinor genera under field extensions. II. unramified in the bottom field, Amer. J. Math. 100 (1978), no. 3, 523528. MR 0491488 (58:10731a)
 6.
 A.G. Earnest, J.S. Hsia and D.C. Hung, Primitive representations by spinor genera of ternary quadratic forms, J. London Math. Soc. (2) 50 (1994), no. 2, 222230. MR 1291733 (95k:11044)
 7.
 S. Guo, H. Pan, Z.W. Sun, Mixed sums of squares and triangular numbers. II, Integers 7 (2007), #A5, 5 pp. (electronic). MR 2373118 (2008m:11078)
 8.
 J.S. Hsia, Spinor norms of local integral rotations. I, Pacific J. Math. 57 (1975), no. 1, 199206. MR 0374029 (51:10229)
 9.
 B. Kane, On two conjectures about mixed sums of squares and triangular numbers, J. Combinatorics and Number Theory 1 (2009), no. 1, 7790.
 10.
 B. Kane and Z.W. Sun, On almost universal mixed sums of squares and triangular numbers, preprint arXiv:0808.2761.
 11.
 O.T. O'Meara, Introduction to quadratic forms, SpringerVerlag, New York, 1963.MR 0152507 (27:2485)
 12.
 B.K. Oh and Z.W. Sun, Mixed sums of squares and triangular numbers. III, J. Number Theory 129 (2009), 964969.
 13.
 Z.W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), no. 2, 103113. MR 2289977 (2007m:11052)
 14.
 Z.W. Sun, A message to number theory mailing list, April 27, 2008. http://listserv.nodak.edu/cgibin/ wa.exe?A2=ind0804&L=nmbrthry&T=0&P=1670.
 15.
 A. Weil, Number Theory: An approach through history from Hammurapi to Legendre, Birkhäuser Boston, 1984. MR 734177 (85c:01004)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
11E12,
11E20
Retrieve articles in all journals
with MSC (2000):
11E12,
11E20
Additional Information
Wai Kiu Chan
Affiliation:
Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459
Email:
wkchan@wesleyan.edu
ByeongKweon Oh
Affiliation:
Department of Mathematical Sciences, Seoul National University, Seoul 151747, Korea
Email:
bkoh@math.snu.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002993909099900
PII:
S 00029939(09)099900
Received by editor(s):
August 28, 2008
Published electronically:
June 25, 2009
Additional Notes:
The work of the second author was supported by the Korea Research Foundation Grant (KRF2008314C00004) funded by the Korean Government.
Communicated by:
WenChing Winnie Li
Article copyright:
© Copyright 2009
American Mathematical Society
