Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Almost universal ternary sums of triangular numbers


Authors: Wai Kiu Chan and Byeong-Kweon Oh
Journal: Proc. Amer. Math. Soc. 137 (2009), 3553-3562
MSC (2000): Primary 11E12, 11E20
Published electronically: June 25, 2009
MathSciNet review: 2529860
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For any integer $ x$, let $ T_x$ denote the triangular number $ \frac{x(x+1)}{2}$. In this paper we give a complete characterization of all the triples of positive integers $ (\alpha, \beta, \gamma)$ for which the ternary sums $ \alpha T_x + \beta T_y + \gamma T_z$ represent all but finitely many positive integers, which resolves a conjecture of Kane and Sun.


References [Enhancements On Off] (What's this?)

  • 1. Leonard Eugene Dickson, History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966. MR 0245500
  • 2. William Duke and Rainer Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99 (1990), no. 1, 49–57. MR 1029390, 10.1007/BF01234411
  • 3. A. G. Earnest, Representation of spinor exceptional integers by ternary quadratic forms, Nagoya Math. J. 93 (1984), 27–38. MR 738916
  • 4. A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations. II, Pacific J. Math. 61 (1975), no. 1, 71–86. MR 0404142
  • 5. A. G. Earnest and J. S. Hsia, Spinor genera under field extensions. II. 2 unramified in the bottom field, Amer. J. Math. 100 (1978), no. 3, 523–538. MR 0491488
  • 6. A. G. Earnest, J. S. Hsia, and D. C. Hung, Primitive representations by spinor genera of ternary quadratic forms, J. London Math. Soc. (2) 50 (1994), no. 2, 222–230. MR 1291733, 10.1112/jlms/50.2.222
  • 7. Song Guo, Hao Pan, and Zhi-Wei Sun, Mixed sums of squares and triangular numbers. II, Integers 7 (2007), A56, 5. MR 2373118
  • 8. J. S. Hsia, Spinor norms of local integral rotations. I, Pacific J. Math. 57 (1975), no. 1, 199–206. MR 0374029
  • 9. B. Kane, On two conjectures about mixed sums of squares and triangular numbers, J. Combinatorics and Number Theory 1 (2009), no. 1, 77-90.
  • 10. B. Kane and Z.W. Sun, On almost universal mixed sums of squares and triangular numbers, preprint arXiv:0808.2761.
  • 11. O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Bd. 117, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0152507
  • 12. B.-K. Oh and Z.W. Sun, Mixed sums of squares and triangular numbers. III, J. Number Theory 129 (2009), 964-969.
  • 13. Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), no. 2, 103–113. MR 2289977, 10.4064/aa127-2-1
  • 14. Z.W. Sun, A message to number theory mailing list, April 27, 2008. http://listserv.nodak.edu/cgi-bin/ wa.exe?A2=ind0804&L=nmbrthry&T=0&P=1670.
  • 15. André Weil, Number theory, Birkhäuser Boston, Inc., Boston, MA, 1984. An approach through history; From Hammurapi to Legendre. MR 734177

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11E12, 11E20

Retrieve articles in all journals with MSC (2000): 11E12, 11E20


Additional Information

Wai Kiu Chan
Affiliation: Department of Mathematics and Computer Science, Wesleyan University, Middletown, Connecticut 06459
Email: wkchan@wesleyan.edu

Byeong-Kweon Oh
Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
Email: bkoh@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-09-09990-0
Received by editor(s): August 28, 2008
Published electronically: June 25, 2009
Additional Notes: The work of the second author was supported by the Korea Research Foundation Grant (KRF-2008-314-C00004) funded by the Korean Government.
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2009 American Mathematical Society